Gör hårt vatten mjukt

Kemisk bakgrund

Hårt vatten

Jonerna i hårt vatten kan vara Ca2+, Mg2+, Fe3+ eller Mn2+. Hårt vatten är ett problem eftersom det gör det svårt att tvätta när det bildas en gråaktig, kladdig fällning tillsammans med tvålen. Hårt vatten har också en sämre smak. Att tvätta sig med tvål utan mjukmedel i ett hårt vatten kräver mer tvål, eftersom man först måste binda alla kalcium- och magnesiumjoner till fettsyror innan tvålen ger tvätteffekt. Tvålar och tvättmedel innehåller ofta mjukmedel som binder upp de hårda metalljonerna. Eftersom vattenkvalitén varierar i vårt land beroende på berggrunden, bör även tvättmedlen och tvålarna variera i sammansättning.

En vanlig orsak till hårt vatten är att berggrunden består av kalkhaltiga bergarter. Löst koldioxid i regnvattnet som sipprar ned genom berget löser upp kalken och frigör på så sätt kalciumjonerna i form av bikarbonat:
CaCO3(s) + CO2(g) + H2O(l) → Ca2+(aq) + 2 HCO3-(aq)

Definition av vattenhårdhet

Ett vatten med hög salthalt (salter med tvåvärda metalljoner) sägs vara hårt. Ju högre salthalt, desto hårdare.

Hårdheten mäts i en tysk enhet (°dH), där 1 °dH = 7,1 mg Ca eller 4,3 mg Mg eller 10,0 mg Fe per liter vatten. Vatten med en total hårdhet klassificeras på följande sätt [1].:

0-2 °dH mycket mjukt
2-5 °dH mjukt
5-10 °dH medelhårt
10-20 °dH hårt
över 20 °dH mycket hårt

Reaktionsformler för experimentet

Karbonat i vattenlösning står i jämvikt mellan tre former: karbonat (CO3-), vätekarbonat (HCO3-) och kolsyra (H2CO3). Kolsyran i vattenlösningen står dessutom i jämvikt med koldioxid i luften (CO2(g)). Koldioxidens löslighet minskar med ökande temperatur. Om man därför värmer en lösning med karbonat förloras en del kolsyra som koldoxid till luften. Förlusten av kolsyra gör lösningen mera basisk och den kommer då att innehålla större andel karbonatjoner [1]. Följande sker:

2 HCO3- ⇄ H2CO3(aq) + CO32-
H2CO3(aq) + värme → H2O + CO2(g)­
Nettoreaktion: 2 HCO3- + värme → H2O + CO2(g) + CO32-

Kvar i lösningen efter upphettningen, sedan koldioxiden avgivits, blir alltså vatten och karbonatjoner (CO32-). De tvåvärt negativa karbonatjonerna binder kraftigt till de tvåvärt positiva metalljonerna (Ca2+, Mg2+ osv.) och bildar en fällning som sakta sjunker till botten eller som kan filtreras bort. Den starka bindningen mellan jonerna beror på att både de negativa och postiva jonerna har flera laddningar.

Ca2+ + CO32- → CaCO3(s)↓

Summan av kardemumman blir att man tar bort de "hårda", tvåvärda metalljonerna från lösningen och ersätter dem med de "mjuka" natriumjonerna, Na+, som ingår i natriumbikarbonatet man tillsätter, NaHCO3.

Alternativ medtod utan upphettning

Metoden i experimentet drar nytta av det faktum att kalciumkarbonat (CaCO3) har mycket lägre löslighet i vatten än kalciumbikarbonat (Ca(HCO3)2). De hårda metalljonerna i vattnet fälls ut tack vare förekomsten av de tvåvärda karbonatjonerna. Ett annat sätt att få karbonatet i form av CO32- är att tillsätta ett basiskt ämne. Ett basiskt ämne tillför hydroxidjoner, OH-, till vattenlösningen och dessa plockar vätet från vätekarbonatet.

En metod som bygger på tillsats av bas och som ofta används i vattenverken är kalk-sodaprocessen. Man tillsätter släckt kalk (kalciumhydroxid, Ca(OH)2) och soda (natriumkarbonat, Na2CO3). Följande reaktioner sker [2]:
HCO3-(aq) + OH-(aq) → CO32-(aq) + H2O(l)
Ca2+(aq) + CO32-(aq) → CaCO3(s)
Mg2+(aq) + 2 OH-(aq) → Mg(OH)2(s)

Murbruk

Kalciumhydroxid (släckt kalk; Ca(OH)2) tillverkas genom släckning av kalciumoxid (CaO) med vatten.

CaO(s) + H2O(l) → Ca(OH)2(s)

Murbruk består av släckt kalk, vatten och sand. Sanden är utfyllnad. Det fuktiga murburket tar upp koldioxid ur luften och bruket hårdnar när det bildar kalciumkarbonat. Det hårdnade kalciumkarbonatet binder samman sandkornen till ett starkt material.

Ca(OH)2(s) + CO2(g) → Ca2CO3(s) + H2O(l)

För att skynda på processen inomhus bränner man ofta koks. Det tillför den nödvändiga koldioxiden och samtidigt påskyndar der avdunstningen av det vatten som bildas. [1]

Ett problem med murbruk kan vara att, eftersom det är basiskt, så kan det reagera med sura gaser i luften. Karbonatet i bruket regerar med vätejonerna i surt vatten och bildar vätekarbonat som är mera lättlösligt och som sköljs bort med regnet. Försurningen kan alltså orsaka vittring av murbruk (och betong).

Fördjupning

Vatten

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.

Vattnets ovanliga egenskaper

Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.

Vattnet är tyngst vid +4 °C.
Bild: © Svante Åberg

Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.

Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.

Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).

Vattnet är livsnödvändigt

Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.

När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.

Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.

Vattnet blev referens för temperaturskalan

Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.

När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K


Vätebindningar karaktäriserar vattenmolekylen

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.

Vätebindningarna ger hög ytspänning

Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.

Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.

Vinklad molekyl ger hexagonal struktur

I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats.
Bild: © Svante Åberg

Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.

Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.

Vattnets syra-basegenskaper

Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.

Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.

Kalkvatten är reagens på koldioxid

Kalkvatten, en mättad vattenlösning av kalciumhydroxid, Ca(OH)2(aq), är reagens på koldioxid.

Kalkvatten ger utfällning med koldioxid

Kalkvattnet innehåller jonerna Ca2+ och OH-. Kalklösningen är basisk, och så snart koldioxiden (CO2) bildar kolsyra (H2CO3) med vatten (H2O) plockar hydroxiden upp vätejonerna från kolsyran.

CO2(g) + H2O(l) → H2CO3(aq)
H2CO3(aq) + 2 OH → 2 H2O(l) + CO32–
Nettoreaktion: CO2(g) + 2 OH → H2O(l) + CO32–

Sedan sker utfällning av svårlöslig kalciumkarbonat.

Ca2+ + CO32- → CaCO3(s)

Utfällningen av fasta partiklar gör att vattnet blir grumligt.


Kacliumkarbonatet är svårlösligare än kacliumhydroxiden

Kalkvattnet är en mättad lösning av kalciumhydroxid. Lösligheten är låg, så trots att lösningen är mättad är halten av Ca(OH)2(aq) ändå liten, bara 1,73 g/liter vid rumstemperatur 20 °C.

För kalciumkarbonat är lösligheten ännu mycket mindre. En mättad lösning vid rumstemperatur innehåller bara 0,013 g/liter CaCO3(aq).

Löslighetsprodukterna är
Ksp(Ca(OH)2)= [Ca2+][OH]2 = 5,5·10-6 M2
Ksp(CaCO3)= [Ca2+][CO32–] = 3,3·10-9 M2

Anledningen till att karbonatet är svårlösligare än hydroxiden är att karbonatjonen är tvåvärd (CO32–), men hydroxidjonen envärd (OH). Den elektriska attraktionskraften mellan den positiva och negativa jonen ökar med jonladdningen. Att även kalciumjonen är tvåvärd (Ca2+) bidrar till saltets svårlöslighet.

Koldioxid-karbonatsystemet

Koldioxid tillsammans med vatten ingår i en serie former av kolsyra och karbonater som står i jämvikt med varandra. Förutom koldioxid och vatten som bildar kolsyra finns också syra-basjämvikterna mellan kolsyran och dess salter. Vi har följande:

CO2(g) CO2(aq) löslighetsjämvikt
CO2(g) + H2O(l) H2CO3(aq) jämvikt för bildning av kolsyra
H2CO3(aq) HCO3 + H+ syra-basjämvikt
HCO3 CO32– + H+ syra-basjämvikt

Den första jämvikten är en löslighetsjämvikt där koldioxidgas löser sig i vatten. Den andra jämvikten är en reaktion mellan koldioxid och vatten som bildar kolsyra. Den tredje och fjärde jämvikten är syra-basjämvikter där vätejoner ingår.

Alla dessa jämvikter är kopplade. Det innebär att en förändring i halten koldioxid i atmosfären fortplantar sig genom hela systemet så att till exempel halterna vätekarbonat och karbonat också påverkas.

Men eftersom vätejonerna också ingår i jämvikterna, så påverkas koldioxid-karbonatsystemet av sura och basiska ämnen i lösningen. pH är därför en viktig faktor.


Beräkningsexempel på koldioxid i jämvikt med vatten

Vi ska göra beräkningar på jämvikten mellan koldioxid i luften och kolsyra och karbonater i vatten. Värdena gäller för sötvatten vid rumstemperatur. Det är viktigt att känna till att jämviktskonstanterna är starkt beroende av temperatur och salthalt. Därför blir värdena annorlunda om man ska räkna på havsvatten eller kallare vatten.

Jämvikten mellan koldioxid i luften och i vattnet

Henrys lag tillämpad på koldioxid lyder KH = PCO2/[CO2(aq)] = 29,41 atm/(mol dm–3)

Koldioxidhalten 0,0387 % i luften vid 1 atmosfär ger PCO2 = 3,87·10-4 atm

Koncentrationen löst koldioxid i vattnet är då [CO2(aq)] = PCO2/K = 3,87·10-4 atm / (29,41 atm/(mol dm–3)) = 1,316·10-5 mol dm–3 ≈ 1,3·10-5 mol dm–3

Jämvikten mellan löst koldioxid i vattnet och kolsyra

Jämviktskonstanten för bildningen av kolsyra är K = [H2CO3(aq)]/[CO2(aq)] = 1,3·10-3

Halten kolsyra blir då [H2CO3(aq)] = [CO2(aq)] · 1,3·10-3 = 1,316·10-5 mol dm–3 · 1,3·10-3 = 1,711·10-8 mol dm–3 ≈ 1,7·10-8 mol dm–3

Första protolyssteget av kolsyran

Jämviktskonstanten för bildningen av vätekarbonat ur kolsyran är KA1 = [H+][HCO3]/[H2CO3(aq)] = 2,00·10-4 mol dm–3

Halten vätekarbonat blir då [HCO3] = 2,00·10-4 mol dm–3 · [H2CO3(aq)] / [H+]) = 2,00·10-4 mol dm–3 · 1,711·10-8 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / [H+]

Antag att pH är 8,14, vilket innebär [H+] = 10-8.14 mol dm–3

Vi får [HCO3] = 3,421·10-12 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / (10-8.14 mol dm–3) = 4,723·10-4 mol dm–3 ≈ 4,7·10-4 mol dm–3

Andra protolyssteget av kolsyran

Jämviktskonstanten för bildningen av karbonat ur vätekarbonatet är KA2 = [H+][CO32–]/[HCO3] = 4.69·10-11 mol dm–3

Halten karbonat blir då [CO32–] = 4,69·10-11 mol dm–3 · [HCO3] / [H+] = 4,69·10-11 mol dm–3 · 4,723·10-8 mol dm–3 / (10-8.14 mol dm–3) = 3,057·10-6 mol dm–3 ≈ 3,1·10-6 mol dm–3

Jämvikt

Jämvikt bygger på att en reaktion sker i framriktningen och tillbakariktningen samtidigt och att reaktionshastigheterna är lika stora. Det innebär att det totalt sett inte sker någon förändring, trots att reaktionerna hela tiden pågår. Man säger att jämvikten är dynamisk därför att det är en pågående process.

Med reaktionsformel så ser jämvikten mellan ämne A och ämne B ut på följande sätt:

A ⇄ B

En liknelse för att förklara jämvikten

Föreställ dig att en hink med vatten står under kranen som är öppen. Men det finns ett hål i hinkens botten där vatten rinner ut. De reaktioner vi tittar på är tillförsel av vatten till hinken (framriktningen) och bortförsel av vatten från hinken (tillbakariktningen).

Vatten utanför hinken motsvarar A i jämvikten ovan, och vatten inuti hinken motsvarar B. Vi kan då skriva jämvikten med ord på följande sätt:

vatten utanför hinken (A) ⇄ vatten inuti hinken (B)

Vi öppnar kranen

Innan vi öppnar kranen, så är hinken tom, men så snart vi öppnar kranen börjar hinken fyllas med vatten. I början är vattennivån låg och det rinner inte ut vatten genom hålet lika snabbt som vatten fylls på från kranen. Det innebär att vattennivån i hinken ökar. Jämvikten har inte ännu ställt in sig.


Vid det högre vattenflödet från kranen till hinken (höger bild), så stabiliseras vattenytan på en högre nivå.
Bild: Svante Åberg

Men ju högre vattennivån blir, desto snabbare rinner vatten ut genom hålet. Till slut rinner vatten ut lika snabbt som det fylls på.

Detta tillstånd får man vid en bestämd vattennivå i hinken som svarar mot ett visst tryck hos vattnet. Denna nivå är jämviktsnivån.

Trots att vi har pågående reaktion i framriktningen (A → B) och samtidigt i tillbakariktningen (A ← B), så är vattennivån stabil. Detta stabila tillstånd, trots pågående reaktioner, kallas dynamisk jämvikt.

Vi ändrar flödet

Om vi sedan skulle ändra kranen så att det tillförs vatten snabbare eller långsammare, så skulle vattennivån i hinken börja förändras igen. Så småningom skulle en ny jämvikt ställa in sig på en annan vattennivå.

Ett högt flöde från kranen ger en hög jämviktsnivå i hinken, ett lågt flöde ger en låg jämviktsnivå.


Exempel på jämvikter

Esterjämvikten

Man kan tillverka väldoftande luktämnen genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra → ester + vatten

Från början finns ingen ester och inget vatten, bara alkohol och syra. Reaktionen sker därför bara åt höger. Men när det väl har bildats en del ester och vatten, så börjar det ske en reaktion åt andra hållet så att alkohol och syra återbildas. Men tillbakareaktionen är långsam i början eftersom det finns så lite ester och vatten som kan reagera.

alkohol + syra ← ester + vatten (långsam i början)

Med tiden bildas det alltmera ester och vatten, vilket gör att tillbakareaktionen blir snabbare. Samtidigt minskar mängden alkohol och vatten, vilket gör att framåtreaktionen blir långsammare. Till slut är tillbakareaktionen lika snabb som framåtreaktionen. Då har dynamisk jämvikt ställt in sig.

alkohol + syra ⇄ ester + vatten

Löslighetsjämvikt

Salter är lösliga i vatten, men bara upp till en viss gräns. När saltlösningen blivit mättad, så är systemet i jämvikt. Exempel på ett salt är natriumklorid, det vill säga vanligt koksalt.

NaCl(s) ⇄ Na+ + Cl

En sak som är speciell i detta fall är att koncentrationen av salt i fast form är konstant, oberoende av hur mycket fast salt vi har. Det innebär att reaktionen i framriktningen alltid är lika snabb.

Däremot varierar koncentrationen av natriumjoner och kloridjoner. I början finns inga natrium- och kloridjoner i lösning. Då sker bara reaktionen i framriktningen.

Men ju mer natrium- och kloridjoner som går i lösning, desto snabbare blir tillbakareaktionen. Till slut faller koksalt ut lika snabbt som det går i lösning. Då har vi fått dynamisk jämvikt.

Jämviktsläget

Massverkans lag

Massverkans lag anger att när ämnen reagerar med varandra, så är reaktionshastigheten proportionell mot koncentrationen av de partiklar som reagerar. Det är en statistisk effekt som kommer av att en kemisk reaktion bara kommer till stånd om de reagerande partiklarna kolliderar. Om koncentrationen av partiklar är hög, så blir det många kollisioner per sekund. Då är det också fler partiklar som reagerar varje sekund – reaktionshastigheten blir hög.

I en jämvikt sker reaktion både i framriktningen (åt höger) och i tillbakariktningen (åt vänster). Jämviktsläget beror på reaktionshastigheten åt höger i jämförelse med den åt vänster. Jämvikt fås när hastigheten åt höger och åt vänster är lika. Det betyder att lika mycket bildas som det som förbrukas. Nettoförändringen blir noll.

Man har så kallad dynamisk jämvikt. Ordet dynamisk anger att reaktionerna hela tiden pågår. Men i och med att inga nettoförändringar sker, så har man jämvikt.

Sannolikheten för kemisk reaktion vid en kollision

Det är emellertid inte varje kollision som leder till kemisk reaktion. Kemisk reaktion innebär att bindningar bryts i den gamla partikeln och nya skapas som ger ett nytt ämne. Men oftast studsar partiklarna bort från varandra utan att reagera. Om partiklarna inte är rätt orienterade i förhållande till varandra vid kollisionen, så sker ingen kemisk reaktion.

Aktiveringsenergin måste övervinnas för att reaktion ska ske

Inte heller sker någon reaktion om kollisionsenergin är för liten. Rörelseenergin i kollisionen måste övervinna den energitröskel det innebär att bryta de gamla bindningarna. Inte förrän dessa är brutna kan nya bildas. Denna energitröskel benämns aktiveringsenergi.

När energinivåerna skiljer, så påverkar det jämviktsläget

Om ämnena på ena sidan i reaktionsformeln är energirikare än ämnena på andra sidan, så är energitröskeln olika stor för reaktionen åt höger respektive åt vänster. (Figur som visar ett sådant exempel ska infogas här.)

När framåt- och bakåtreaktionen sker olika lätt, så påverkar det jämviktsläget. Om till exempel framåtreaktionen är kraftigt exoterm, så är energitröskeln i framriktningen låg och en stor andel av kollisionerna leder till reaktion. Men då blir samtidigt energitröskeln för reaktion i bakåtriktningen hög. Det krävs en hög koncentration av partiklar i högerledet av jämviktsreaktionen för att reaktionshastigheten åt vänster ska bli lika hög som den åt höger. En starkt exoterm jämvikt brukar därför vara starkt förskjuten åt höger.

Jämviktskonstanten är ett mått på jämviktsläget

För att få ett mått på jämviktslägen behöver man få en siffra på hur den aktuella kemiska reaktionen ställer in sig. Värdet hos jämviktskonstanten K återspeglar jämviktsläget. Ju större konstanten är, desto mer förskjuten åt höger är jämvikten. Exempel på en jämvikt som är väldigt starkt förskjuten åt höger är reaktionen mellan vätgas och syrgas då vatten bildas:

2 H2 + O2 ⇄ 2 H2O, K = 3,2·1081 M–1

En jämviktskonstant som är nära noll tyder på en jämvikts som är starkt förskjuten åt vänster. Exempel på en jämvikt som är starkt förskjuten åt vänster är vattnets autoprotolys:

2 H2O ⇄ H+ + OH, K = 1,0·10–14 M2 (lösningsmedlet vatten enhetslöst)

Exempel på en jämvikt som inte är så starkt förskjuten åt någotdera hållet är esterjämvikten:

alkohol + syra ⇄ ester + vatten, K ≈ 4

Försurning av haven

Halterna i atmosfären

Koldioxidhalten i atmosfären är mycket låg, bara cirka 0,04 %, men har ändå stor betydelse i miljön. Dels är koldioxiden en växthusgas som höjer jordens temperatur, dels löser sig koldioxid lätt i vattnet och bildar kolsyra.

Halterna koldioxid i luften har ökat sedan industrialismen slog igenom och fortsätter att öka. Anledningen är att vi använder fossila bränslen som tidigare var gömda i marken och inte kom ut i atmosfären, men som nu adderas till den koldioxid som naturligt förekommer som en del av kolets kretslopp mellan växter och djur.

Löslighet och pH i vatten

Lösligheten för koldioxid i vatten är hög därför att den kolsyra som bildas när den reagerar med vattnet sedan reagerar vidare och bildar vätekarbonat. Jämviktsprocesserna gör att det då frigörs plats för att ytterligare koldioxid ska lösa sig och bilda kolsyra. Eftersom kolsyran är en syra sänks pH i vattnet, det blir surare.

Organismer med kalkskelett påverkas

I havet lever många organismer med kalkskelett. Kalken är kemiskt sett kalciumkarbonat, ett basiskt ämne. Karbonatet i skelettet står i jämvikt med löst karbonat i vattnet. Jämvikten innebär att kalken i skelettet både avger och tar emot karbonatjoner från vattnet. Men när vattnet är surt förbrukas karbonat och bildar vätekarbonat, som är en något surare form av karbonat. Detta minskar tendensen för karbonat att bindas till kalkskelettet. Resultatet blir att organismens skelett har svårt att växa till och djuret lider, överlever kanske inte.

Exempel på djur med kalkskelett är musslor, krabbor, koraller, med flera. Speciellt korallreven är illa ute. De utsätts dels för surare vatten, dels för förhöjda temperaturer som de inte tål. Dessutom är korallreven mycket långlivade kolonier som byggs upp under tusentals år och som inte klarar plötsliga förändringar i miljön.

Korallreven är mycket viktiga ekologiska system som ger skydd och underlag för otaliga arter av djur och växter. Den biologiska produktionen på reven är mycket stor. Om reven dör, så försvinner till exempel en stor del av fisken i haven.


Kolets kretslopp i havet och atmosfären

Det uppskattas att cirka 30-40 % av människans utsläpp av koldioxid absorberas av haven och andra vattendrag. Under perioden mellan år 1751 och 1996 beräknar man att ytvattnet i haven har minskat sitt pH från cirka 8,25 till 8,14. Det motsvarar en ökning av vätejonhalten [H+] med 35 %.

Det finns ett ständigt utbyte av koldioxid i sina olika former mellan atmosfären och havet, mellan vatten på olika djup, och mellan sedimenterat och löst kol. Man brukar talar om "koldioxidens biologiska och fysikaliska pumpar".


CO2-cykeln i havet och atmosfären.
CC BY-SA 2.5

Hydratiserade joner

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Vatten är ett av de allra viktigaste ämnena. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Exempel på hur joner är hydratiserade,
dvs. omges av skal av vattenmolekyler.
Bild: © Svante Åberg

Vattenmolekyler är dipoler och bildar jon-dipolbindning i saltlösningar. Dipolen vänder sig så att den laddning som är motsatt jonens kommer närmast jonen eftersom det är den del som attraheras starkast. På grund av närheten till jonen är attraktionen av den motsatta laddningen starkare är repulsionen av laddningen med lika tecken som jonen. Därför blir det en nettoattraktion mellan jonen och dipolen.

Eftersom dipolmolekylen som helhet är elektriskt neutral får det bildade komplexet samma laddning som den enkla jonen. Eftersom det finns plats för flera vattenmolekyler kring varje jon, så omges jonerna av ett skal av vattenmolekyler. Man säger att jonerna är hydratiserade och bildar akvajoner (akvajon = jon som bundit vatten som ligander; ligand = molekyl som binds till centralatomen).


Bindningsenergin för jon-dipolbindning är alltid mycket mindre än för jon-jonbindning. När avståndet ökar, går också attraktionsenergin för den förra bindningstypen snabbare mot noll än för den senare typen. De första dipolmolekylerna som binds till en jon attraheras naturligtvis tills de kommer i kontakt med jonen. Härigenom bildas en inre sfär ("skal") av bundna ligander. Om ligander finns i tillräcklig mängd (t.ex. om jonen befinner sig i en lösning där lösningsmedlet utgörs av ligandmolekyler), binds de ofta även i ett eller flera yttre skal. Jonen kommer då att omges av ett moln av ligander som åtminstone i sina yttre delar är ganska odefinierat. Bindningsstyrkan för liganderna avtar med avståndet från centralatomen.

Den hydratiserade jonen är mycket större än vattenmolekylerna

Den nakna metalljonen är ungefär lika stor som en vattenmolekyl. Men den hydratiserade jonen är mycket större än vattenmolekylerna.

Den hydratiserade jonen fungerar som en stor partikel. Det medför att de hydratiserade jonerna inte kan passera genom semipermeabla (halvgenomsläppliga) membran. Däremot kan de fria vattenmolekylerna passera genom det semipermeabla membranet. Detta sker till exempel vid dialys. Ett annat exempel är när dricksvatten framställs ur havsvatten med omvänd osmos. Genom högt tryck tvingar man vattenmolekylerna att passera genom membranet, men de hydratiserade saltjonerna hindras. På andra sidan membranet kommer då ut rent vatten.

Koordinationskomplex

Kring en centralatom eller jon, ofta en metalljon, binds ofta molekyler eller joner som finns i den omgivande lösningen. Till exempel har man i en lösning med koppar(II)klorid kopparjoner (Cu2+) som binder ett antal kloridjoner (Cl). Utrymmet närmast kopparjonen är begränsat. Därför ryms det upp till 4 kloridjoner kring kopparjonen. Ett sådant komplex kallas koordinationskomplex och de partiklar som binds till centralatomen/jonen kallas ligander. Kloridjonen är alltså ligand.

Det finns många möjliga ligander. Ofta är lösnlingsmedelsmolekylerna ligander eftersom de är så vanliga i lösningen. Vatten (H2O) binds ofta till centraljonen och bildar ett hydratiseringsskal kring jonen. Utöver vatten (H2O) och klorid (Cl), så är ammoniak (NH3), hydroxid (OH), cyanid (CN), oxalat (COO)22- exempel på några ligander.


Koncentrationen påverkar hur många ligander som binds

Koncentrationen av de partiklar som kan fungera som ligander påverkar hur många ligander som i genomsnitt binds till centralatomerna. I en mycket utspädd lösning av kopparklorid (CuCl2) är kloridjonerna mycket ovanliga, men molekylerna av lösningsmedlet (H2O) mycket vanliga. Chansen för kopparjonen att hitta en kloridjon är därför liten. I stället binder kopparjonen vattenmolekyler som ligander och koordinationskomplexet blir [Cu(H2O)6]2+. Det ryms alltså 6 vattenmolekyler kring den centrala kopparjonen. Koordinationstalet är alltså 6 för vatten kring kopparjonen.

När koppar(II)kloriden späds med vatten byts kloridliganderna ut mot vatten och färgen övergår från grönt till blått.
Bild: CC

Om koncentrationen av kopparklorid ökar, så blir kloridjonerna vanligare. Då blir det också vanligare att kopparjoner binder en kloridjon så att koordinationskomplexet [CuCl]+ bildas. Formeln anger inte antalet vatten som också koordinerar till kopparjonen, men det finns också vattenmolekyler som binder. Därför är en mer komplett formel för komplexet [CuCl(H2O)5]+ om koordinationstalet fortfarande är 6. En kloridjon har ersatt en vattenmolekyl. På grund av kloridjonens minusladdning är komplexets laddning bara +, inte 2+ som det rena akvakomplexet hade.

Vid ytterligare högre koncentration av kopparkloriden ökar antalet kloridjoner som ligander. Som mest binder 4 kloridjoner till den centrala kopparjonen. Koordinationstalet har därför minskat från 6 till 4. Kloridjonerna är nämligen mer skrymmande (c:a 3.62 Å diameter) än vattenmolekylerna (c:a 2.75 Å diameter). Formeln för komplexet blir [CuCl4]2–, eller helt enkelt CuCl42–.

Akvakomplexet för koppar är vackert blått, men kloridkomplexet går mera i grönt. Om du har saltet koppar(II)klorid och tillsätter lite vatten i taget för att lösa saltet, så får du först den vackert gröna färgen för kloridkomplexet. Så småningom övergår färgen till blått när lösningen blir mera utspädd.

Oladdade komplex har lägre löslighet i vatten

En intressant sak är att lösligheten i vatten för komplex minskar drastiskt när komplexet är oladdat. När den tvåvärda kopparjonen koordinerar två stycken av de envärda kloridjonerna, så blir totalladdningen noll, dvs.
Cu2+ + 2 Cl ⇄ CuCl2

Lösligheten följer principen ”lika löser lika”. Eftersom vatten är ett starkt polärt ämne, så löser sig joner i vattnet lättare än oladdade partiklar.