Fryspunktsnedsättning

Kemisk bakgrund

Kemikalier

Vatten

Vatten består av två väte och ett syre, vilket gör att vattenmolekylen är polär Det innebär att den har en laddningsförskjutning med en positiv (vätena) och en negativ (syret) sida. Vatten fryser vid 0 °C.

Koksalt

Kemiska beteckningen för vanligt bordssalt (koksalt, natriumklorid) är NaCl (s). När saltet är löst i vatten förekommer det i jonform d.v.s. Na+ och Cl-.

H2O (s) + NaCl (s) → värme + H2O (l) + Na+ + Cl-

Etylenglykol

På vintern då det är kallt kan kylarvattnet frysa i bilen. Det som då händer är att kylarvattnet expanderar då det blir is och ledningar fryser sönder. För att minska risken att kylarvattnet i bilmotorn fryser på vintern tillsätter man etylenglykol (vardagsbenämning "glykol", formel HO-CH2-CH2-OH). Ämnet löser sig lätt i vatten eftersom det kan vätebinda. Tillsatsen av etylenglykol innebär att fryspunkten för kylarvattnet sjunker. Ju mer etylenglykol man blandar i vattnet desto mer sänker man kylarvattnets fryspunkt. Om det ändå blir så kallt att det fryser bildas i stället en trögflytande sörja av iskristaller i glykol-vattenlösning (ett tvåfassystem). Sörjan bildar inga proppar i ledningen och ger därför ingen sprängkraft.

Glycerol

Insekter som lever i de arktiska zonerna producerar stora mängder glycerol (CH2OH-CHOH-CH2OH), som är ett ämne som liknar etylenglykol. Detta gäller bland annat vår vanliga husfluga. Effekten är att fryspunkten för blodet sjunker och insekten kan överleva vid mycket låga temperaturer.

Issmältning med vägsalt

Om salt sprids på is som täcker gator och trottoarer så smälter denna relativt lätt. De sker under förutsättning att temperaturen utomhus inte är allt för låg. Denna metod att tina is grundar sig på ett välkänt fenomen inom termodynamiken nämligen fryspunktsnedsättningen. Det som händer när man saltar vägarna är att saltet får isen som ligger på vägarna att smälta genom att saltet sänker isens smältpunkt.

Normalt smälter snö och is vid 0°C. Med hjälp av lite salt så går det att smälta snö på vägbanan när det är ända ned till minus 12°C beroende på hur intensiv trafiken är. Saltet "lurar" vintern och vi kan åstadkomma en snö- och isfri väg även vid minusgrader. Vägsalt som används vintertid innehåller minst 98 % ren natriumklorid (NaCl). De resterande två procenten är till största delen fukt och gips, (kalciumsulfat, CaSO4·H2O). Andra salter kan också användas för issmältning.

Fryspunktsnedsättningen

Fryspunkten är ett exempel på en kolligativ egenskap. Det betyder att det inte har betydelse vilken kemikalie det är frågan om, utan den avgörande faktorn i detta fall är koncentrationen av det lösta ämnet.

Fryspunkten för lösningen är lägre än för det rena ämnet. För att räkna på detta kan följande samband användas: ΔTf = Kf · m

ΔTf är fryspunktsnedsättningen för lösningen
Kf är fryspunktsnedsättnings konstant och är specifik för lösningsmedlet.
m är molaliteten av det lösta ämnet, dvs koncentrationen angiven som mol/kg.

För att använda denna formel måste följande antaganden vara uppfyllda:
1. lösningen är ideal
2. lösningen är utspädd
3. att det inte sker någon dissociation eller association av de upplösta ämnets molekyler.

Korrosion

Ett problem som kan uppstå när man saltar vägarna är att bilarna rostar lättare. För att metallen på bilen ska rosta måste en oxidation och en reduktion ske. Vid reduktionen regerar syrgas och vatten till hydroxidjoner under upptagande av elektroner. Vid oxidationen löses metallen samtidigt som det frigörs elektroner. De bildade metalljonerna måste transporteras för att ge en sluten strömkrets. Saltet förbättrar ledningsförmågan och bidrar till att hålla kvar fukt på metallen vilket gör att korrosionen underlättas. Metallen rostar också snabbare om det är varmt, så man kan därför säga att reaktionen är temperaturberoende.

Koksaltet som finns på vägarna består av kloridjoner, som bildar komplex med utlösta metaller, vilket gör att rostbildning sker snabbare. För att förhindra att bilen rostar kan man lacka metallen eller måla den med tät färg och för att skydda underredet så kan man lägga på en tät och seg massa.

Snö

Snö är nederbörd i fast form som består av många iskristaller och har olika former, t.ex. prismor eller stjärnor. Snöflingorna ser olika ut beroende på vilken temperatur och vilken luftfuktighet det är. Då temperaturen är kring 0 °C är snöflingorna stora och kallas för "lapphandskar". Det sägs att det inte finns två snöflingor som ser likadana ut. Några olika former som snöflingor eller iskristaller kan ha är t.ex. dendriter som också kallas trädlik form. Denna form är sexkantig d.v.s. har sex huvudflikar och på varje huvudflik så finns många små flikar. Flingorna är platta och kan ha en diameter på 5 mm eller mer. Det finns också kristaller som kan växa långa och smala som liknar nålar.

Is

Is består av frusna vattenmolekyler som bildar en hexagonal struktur. Varje vattenmolekyl är bunden till fyra andra vattenmolekyler med vätebindning. Is har därför en öppen och luftig struktur som gör att dess densitet är låg, 0,917 g/cm3. Vatten har en densitet på 1,000 g/cm3, vilket är tyngre än is. Sjöar bottenfryser inte eftersom isen har lägre densitet än vatten och lägger sig ovanpå vattnet.

Eftersom vattenmolekylerna är bundna med vätebindning, som är en stark bindning, så får is en hög smältpunkt d.v.s. vid 0 °C. Hade det varit en annan bindning än vätebindning mellan molekylerna så hade smältpunkten varit ca -100 °C.

Fördjupning

Natriumklorid

Natriumklorid är en kemisk förening av natrium och klor med formeln NaCl. I dagligt tal säger via bara "salt" eller "koksalt" när vi talar om natriumklorid, men det är bara ett av många olika salter som existerar. Koksalt är ett lättlösligt salt. Det används i matlagningen för smaksättning, men det fungerar också som konserveringsmedel. Bakterier kan nämligen inte växa om salthalten blir för hög.

Det finns olika kvalitéer av natriumklorid.

  1. Råsalt - Om man samlar vattnet från t ex hav eller sjö i stora bassänger (s.k. saliner) och låter vattnet avdunsta kan man ta vara på det salt som naturligt finns i vattnet. I riktigt varma länder kan salt också utvinnas när naturliga saltöknar bildas. Bergssalt etc utvinns från berggrunden i speciella saltgruvor. Råsalt är ett orenat salt med stora korn, som man vanligen ser i form av ett grovsalt och det kan ha olika färgtoning.
  2. Natriumklorid - Den rena formen tillverkas genom att naturligt råsalt löses i vatten, kokas och omkristalliseras. Det kan också tillverkas kemiskt när klor får reagera med natrium, reaktionen är mycket häftig och utvecklar både starkt gulaktigt sken och intensiv värme. Saltet som bildas är ett fint, vitt kristalliniskt pulver eller färglösa, vitaktiga kristaller.
  3. Hushållssalt - Råsaltet renas, natriumklorid/renat råsalt ges tillsatser. Dagens hushållssalt känner vi igen som vitt, finkornigt och lättrinnande.

Förekomst

Både natrium och klor är mycket reaktiva ämnen och förekommer därför inte som rena ämnen i naturen. Eftersom natriumjonerna och kloridjonerna har motsatt elektrisk laddning attraheras de kraftigt till varandra och bildar då koksalt.

Natriumklorid finns i stora mängder i haven. Ursprungligen kommer saltet från berg som vittrat och lakats ur av vatten. Vattnet har runnit ned till havet där saltet blivit kvar. Havsvattnet avdunstar och bildar moln som sedan fäller sitt vatten över land. Vattnet ingår därför i ett kretslopp. Men koksaltet kan inte avdunsta. Därför stannar saltet kvar i haven.

Det händer att hav torkar in. Ett aktuellt exempel är Aralsjön i Centralasien. Ett annat exempel som inträffade för ungefär 6 miljoner år sedan var när Medelhavet blev torrlagt därför att det tappade kontakten med Atlanten. Vattnet avdunstande och det bildades en saltskorpa som på sina ställen var flera hundra meter tjock. Saltavlagringarna begravdes sedan så att de nu är gömda i underjorden. Sådana geologiska händelser kan föra bort natriumklorid från havsvattnet, och det har hänt många gånger i jordens historia.

Utvinning av salt sker dels genom brytning i gruvor där man har saltavlagringar, dels genom att låta havsvatten avdunsta och samla ihop saltet som blir kvar. Saltet är inte rent koksalt, för det finns även mindre mängder av bland annat magnesiumklorid i havsvattnet. Salthalten i de stora världshaven ligger kring 2,5 – 3,5 %. Av detta salt utgör natriumkloriden cirka 78 %.

Användning

NaCl har i alla tider varit av mycket stor kommersiell betydelse och är nu en av de allra viktigaste industriråvarorna. Den är råvara för praktiskt taget alla natrium- och klorföreningar och förbrukas dessutom i stora mängder som krydda och konserveringsmedel för olika matvaror.

Koksaltet blev tidigt en av världens viktigaste handelsvaror. Under medeltiden bröts stora mängder salt i gruvor i Tyskland och Österrike. Saltet forslades sedan norrut via den så kallade Saltvägen, Via Salaria. När Indien frigjorde sig från Storbritannien demonstrerade man symboliskt mot den Brittiska överhögheten med att genomföra en marsch som protest mot saltskatten.

Koksalt används som issmältningssalt (vägsalt) på våra vägar vintertid. Saltet sänker smältpunkten för is, vilket gör att om temperaturen bara ligger på enstaka minusgrader så kan isen töa bort. Problematiskt är att saltet skadar grundvatten och växtlighet och att det orsakar kraftig rostbildning på fordon och släp som inte har ett fullgott rostskydd.


Egenskaper hos natriumklorid

Kristall av natriumkloridtyp,
med kubiskt gitter.

Koksalt, NaCl, kristalliserar vanligen i kuber med en struktur av natruimkloridtyp. Om kristallisationen sker ur vattenlösning uppstår lätt vatteninneslutningar som vid upphettning sprängs med ett knastrande ljud, saltet ”dekrepiterar”. Smältpunkten för natriumklorid är 801 ºC, kokpunkten 1440 ºC. Som mineral kallas natriumklorid ofta stensalt och är ofta blåfärgat. Den blå färgen beror på närvaron av så kallade F-centra, som troligen uppstått genom strålning från radioaktiva kaliumatomer, 40K, som är inbyggda i kristallen.

Ren natriumklorid är inte hygroskopisk, men handelns koksalt är ofta förorenad av hygroskopiska magnesiumsalter som gör att saltet tar upp fukt från luften.

Fysiologisk saltlösning i människor och djur

Man är ganska säker på att livet en gång uppstod i haven och att levande varelser därefter sökte sig upp på land. Djurens kroppsvätskor innehöll salt, och det är ett arv som vi har från forntiden. Salthalten i kroppens celler är 0,9 %. En saltlösning med denna koncentration kallas för fysiologisk saltlösning. Om man injicerar vätska i kroppens vävnader eller i blodomloppet måste salthalten vara fysiologisk. Annars sker osmos som antingen får cellerna att torka ut eller att svälla och kanske spricka.

Osmos är när vatten vandrar genom ett halvgenomträngligt membran från den sida där det finns mest vatten, vilket är på den sida av membranet som salthalten är lägst, och vandrar till den andra sidan av membranet där vattenhalten är lägre och salthalten högre. Om man injicerar rent vatten kommer cellerna att ta upp vatten, svälla och kanske spricka. Om man injicerar vätska med för hög salthalt skrumpnar cellerna när vattnet vandrar ut ur dem.

Man kan utnyttja att saltet drar ut vatten ur cellerna för att konservera matvaror. Bakterier, mögel och annat kan då inte växa eftersom de torkar ut. Då förstörs inte heller maten. Salt sill från Norge och salt fläsk från Amerika var basföda för en stor del av befolkningen i Sverige förr i tiden. Nu vet vi att det inte är nyttigt att äta för mycket salt. Saltet tenderar att höja blodtrycket. Det har också med osmosen att göra.

Men kroppen behöver salt. När människor och djur inte har tillgång till salt så blir saltet åtråvärt. Älgar och renar är förtjusta i saltstenar som man sätter upp. De får inte i sig så mycket salt i den mat de äter naturligt.

Allvarlig saltbrist kallas hypnoatremi och är ett tillstånd där halten natriumjoner och blodet är för lågt. Normalt har njurarna kapacitet att utsöndra överflödigt vatten, men det har hänt att personer i samband med sportutövning eller bantning har druckit extremt mycket vatten under kort tid och råkat ut för vattenförgiftning. Kroppens celler tar då upp vatten och sväller till onormal storlek. Symptom är desorientering, huvudvärk och yrsel som uppstår när blodflödet hindras. Man blir illamående och talet blir sluddrigt. Tillståndet är allvarligt och kan i sällsynta fall leda till döden. LD50 är den dos som gör att 50 % av personerna avlider. För vatten är LD50 ≈ 6 liter för en vuxen person.

Motsatsen, för högt intag av koksalt, är också farligt. För natriumklorid är LD50 ≈ 12 g NaCl/kg kroppsvikt. Om du t.ex. väger 50 kg så är risken att avlida 50 % om du äter 600 g koksalt.

Vatten

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.

Vattnets ovanliga egenskaper

Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.

Vattnet är tyngst vid +4 °C.
Bild: © Svante Åberg

Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.

Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.

Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).

Vattnet är livsnödvändigt

Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.

När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.

Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.

Vattnet blev referens för temperaturskalan

Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.

När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K


Vätebindningar karaktäriserar vattenmolekylen

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.

Vätebindningarna ger hög ytspänning

Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.

Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.

Vinklad molekyl ger hexagonal struktur

I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats.
Bild: © Svante Åberg

Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.

Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.

Vattnets syra-basegenskaper

Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.

Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.

Vätebindning

Vätebindningar finns i vatten och i många organiska ämnen i kroppen. Vätebindningar ger ämnena polära egenskaper, såsom löslighet i vatten. Vätebindningarna är också viktiga för strukturen hos till exempel DNA.

I strukturformler brukar vätebindningen markeras med streckad linje.

Bindningskrafter inom och mellan molekyler

Kemiska ämnen hålls samman av starka bindningar såsom kovalenta bindningar i molekylföreningar och jonbindningar i salter. Bindningar inom föreningen är intramolekylära krafter.

Men det finns också bindningar mellan föreningarna, intermolekylära krafter.

intramolekylär = inom molekylen
intermolekylär = mellan molekyler

Intermolekylära krafter är svagare än de intramolekylära.

Vätebindning kan ske när vätet sitter på N, O eller F

Den så kallade vätebindningen hör dock till de starkare intermolekylära krafterna. Den kan beskrivas som en extra stark dipol-dipolbindning.

Vätebindning kan uppstå mellan ett väte som sitter på atomslaget N, O eller F i en molekyl och atomslaget N, O eller F i en annan molekyl.

Här är några exempel på kemiska föreningar som kan bilda vätebindningar:

Vatten: H2O kan vätebinda. Däremot kan inte analogen vätesulfid H2S vätebinda eftersom svavel inte är tillräckligt elektronegativ.
Vätefluorid: HF kan vätebinda. Däremot kan inte analogen vätebromid HBr vätebinda eftersom brom inte är tillräckligt elektronegativ.
Ammoniak: NH3 kan vätebinda.
Karboxylsyror: exempelvis ättiksyra, CH3COOH kan vätebinda.
Alkoholer: exempelvis etanol, CH3CH2OH kan vätebinda. Däremot kan inte analogen etantiol CH3CH2SH vätebinda eftersom svavel inte är tillräckligt elektronegativ. Isomeren CH3-O-CH3 till etanol har samma summaformel, men föreningen är en eter och sådana har inget väte som sitter direkt på syreatomen. Därför kan etrar inte vätebinda.
Aminer: exempelvis ettylamin, CH3CH2NH2 kan vätebinda. Undantag är tertiära aminer som trimetylamin N(CH3)3 eftersom det inte sitter någon väteatom direkt på kvävet. Analogen etanitiol, CH3CH2SH, kan inte heller vätebinda eftersom svavel inte är tillräckligt elektronegativ.


Vätebindning kan även ske till kloridjoner

Kloratomen är inte tillräckligt elektronegativ för att skapa ett elektronmoln med så hög täthet att vätebindningar kan skapas. En enskild kloratom kan däremot få tillräckligt tätt elektronmoln genom att ta upp en extra elektron så att en kloridjon skapas.

En lite udda variant av vätebindningar kan därför fås mellan den negativt laddade kloridjonen och vattenmolekyler i lösningen, exempelvis en koksaltlösning.

Bilden till höger är en ögonblicksbild av en simulering. Vätebindningarna är markerade med röda streck. Väteatomer är vita, syreatomer röda och kloridjonen är rosa.

Man kan se vätebindningar mellan vätet i vatten och kloridjonen, liksom vätebindning mellan vätet i en vattenmolekyl och syret i en annan vattenmolekyl.

N, O och F är starkt elektronegativa atomslag


Elektronmolnet kring en vattenmolekyl är starkt förskjutet från väteatomerna mot syreatomen.
"Water charge distribution" av Martin Chaplin

Atomslagen N, O och F är de mest elektronegativa atomslagen i hela periodiska systemet. Elektronegativa atomer har förmågan att dra till sig elektroner.

I vatten sitter vätet på en syreatom. Vätet har en kärna med laddningen +1 och en elektron med laddningen –1. En fri väteatom har därför nettoladdningen 0. Syret drar till sig elektronmolnet mycket effektivt, vilket leder till att det blir ett positivt laddningsöverskott δ+ på väteatomen. Vatten har två väteatomer, som sitter på syret. Även den andra väteatomen får ett positivt laddningsöverskott δ+. På motsvarande sätt får syreatomen ett dubbelt negativt laddningsöverskott 2δ–.

Det positiva vätet i en vattenmolekyl kan binda till det negativa syret i en annan vattenmolekyl med så kallad vätebindning. Bindningen är ovanligt stark för att vara en intermolekylär bindning. Det beror på att vätet är nästan ”naket” när elektronmolnet dragit sig undan så effektivt från vätet. Därmed kan vätet komma mycket nära syreatomen i den angränsande vattenmolekylen, vilket gör att den elektrostatiska attraktionen blir extra stark.

Vätebindningarna ger vattnet dess egenskaper

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vatten är det viktigaste lösningsmedlet, inte bara inom kemin, men också för livet på jorden. Vattnet har nämligen speciella egenskaper som beror på vätebindningarna mellan molekylerna.

På grund av polariteten hos vätebindningarna är vatten ett utmärkt lösningsmedel för polära ämnen såsom salter och organiska ämnen med polära grupper. Den vinklade formen hos vattenmolekylen ger en hexagonal struktur hos iskristallerna när vattnet fryser, vilket återspeglas i snöflingornas sexkantiga form. Iskristallerna hålls samman av vätebindningar. Vätebindningarnas styrka gör också att vattnets kokpunkt är mycket högre än den annars skulle vara.


Vätebindningarna ger struktur åt DNA

Vårt genetiska arv är kodat i DNA. Där finns basparen AT (Adenin och Tymin) och GC (Guanin och Cytosin). Det är viktigt att A verkligen parar med T och att G verkligen parar med C, annars skulle det bli oordning i den genetiska koden.


Basparning av Adenin och Tymin.

Basparning av Guanin och Cytosin.
"Base pair Adenine Tyhmine" av Yikrazuul" Public Domain Mark "Base pair Guanine Cytosine" av Yikrazuul" Public Domain Mark

Parningen blir rätt tack vare att A och T parar med två vätebindningar, men G och C parar med tre vätebindningar.