![]() |
|
Strukturen hos ett hårstrå. Bild: © Svante Åberg |
Fakta till ovanstående stycken är hämtade från [1 s. 14-18].
![]() |
|
Innanför kutikulan består ett hårstrå av fibriller som i sin tur är uppbyggda av tre keratinmolekyler vardera. Bild: © Svante Åberg |
![]() |
|
Keratinmolekylen liknar en telefonsladd. Vätebindningarna är markerade med gröna linjer. |
Vätebindningarna medför att håret går att forma i blött tillstånd och håret behåller den form som det rullats i när det torkat, du kanske har gått och lagt dig med blött hår nån gång. Lockarna blir mer hållbara då de rullats i blött hår än i torrt hår eftersom vätebindningarna inte kan tvingas att binda om på nytt i torrt hår. När det gäller blött hår så finns det god tillgång på vatten (vätebindningar) och bindningar som är spända kan brytas och nya mindre påfrestade bindningar bildas. Eftersom vätebindningen är en ganska svag bindning så blir resultatet ej beständigt. För att nå ett sådant resultat måste man bearbeta håret på kemisk väg.
En SH-grupp i en cystein har reagerat med en annan cysteinmolekyl i en annan keratinmolekyl och väte har frigjorts. På detta sätt ser det ut i alla hårstrån. Det som sker vid permanent är att man bryter dessa bindningar med en speciell permanentvätska. Sedan kan man forma håret enligt den mall (hårrulle) som man vill att håret ska ha. Efter det så tillsätts fixeringsvätska som medför att nya svavel-svavelbryggor skapas. Håret har fått en ny permanent form. Reaktionen kan beskrivas som följande:
![]() |
|
Vid permanentningen bryts disulfidbindningarna för att återbildas när håret har sin nya form. Bild: © Svante Åberg |
Som reduktionsmedel i första steget används ibland ammoniumsaltet av tioglykolsyra (ammoniumtioglykolat). Som oxidationsmedel används väteperoxid, natriumperborat eller andra oxiderande ämnen. Vilka ämnen som används varierar mellan de olika permanentmärkena. Numera används ofta permanentvätskor som ska förstöra håret så lite som möjligt vid permanent. Vad man bör observera vid permanent att det är en kemisk behandling som kan skada håret allvarligt om det utförs flera gånger.
Redoxreaktioner kan delas upp i delreaktionerna oxidation och reduktion.
Med oxidation menar man reaktioner där elektroner avges. Vid en oxidationsreaktion avges energi i de flesta fallen. Flera metaller kan reagera vid rumstemperatur med luftens syre till oxider. Exempel på detta är järn som oxideras av luftens syre och bildar då rost. Oxidationssteget är
Fe → Fe2+ + 2 e–
Motsatsen till oxidation är reduktion. Reduktion innebär att elektroner tas upp. Exempel på en reduktion är när syreatomerna tar upp de elektroner som järnet avger när det rostar. Syreatomerna bildar negativa joner. Man säger då att syret har reducerats
O + 2e– → O2–
Elektroner kan inte förkomma fria, de kan bara överföras från ett ämne till ett annat. När en reduktion sker, sker samtidigt en oxidation eftersom lika stort antal elektroner avges och tas upp. Vi kallar detta redoxreaktion. I exemplet med oxidation av järn och reduktion av syre balanseras de två delreaktionerna så att lika många elektroner tas emot som de som avges och man får totalreaktionen
Fe + O → Fe2+ + O2–
Om vi tar hänsyn till att syrgas förekommer som molekyler och att järnjonerna och syrejonerna bildar föreningen FeO och dessutom anger aggregationsformen, så kan vi snygga till reaktionsformeln för totalreaktionen till
2 Fe(s) + O2(g) → 2 FeO(s)
material på avancerad nivå kommer att läggas in här
Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.
Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.
![]() |
Vattnet är tyngst vid +4 °C. |
Bild: © Svante Åberg |
Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.
Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.
Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).
Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.
Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.
När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.
Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.
Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.
När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K
![]() |
Vätebindningarna i vatten. |
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild |
Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.
Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.
Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.
![]() ![]() |
I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats. |
Bild: © Svante Åberg |
Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.
Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.
Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.
Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.
Vätebindningar finns i vatten och i många organiska ämnen i kroppen. Vätebindningar ger ämnena polära egenskaper, såsom löslighet i vatten. Vätebindningarna är också viktiga för strukturen hos till exempel DNA.
I strukturformler brukar vätebindningen markeras med streckad linje.
Kemiska ämnen hålls samman av starka bindningar såsom kovalenta bindningar i molekylföreningar och jonbindningar i salter. Bindningar inom föreningen är intramolekylära krafter.
Men det finns också bindningar mellan föreningarna, intermolekylära krafter.
intramolekylär = inom molekylen
intermolekylär = mellan molekyler
Intermolekylära krafter är svagare än de intramolekylära.
Den så kallade vätebindningen hör dock till de starkare intermolekylära krafterna. Den kan beskrivas som en extra stark dipol-dipolbindning.
Vätebindning kan uppstå mellan ett väte som sitter på atomslaget N, O eller F i en molekyl och atomslaget N, O eller F i en annan molekyl.
Här är några exempel på kemiska föreningar som kan bilda vätebindningar:
Vatten: H2O kan vätebinda. Däremot kan inte analogen vätesulfid H2S vätebinda eftersom svavel inte är tillräckligt elektronegativ.
Vätefluorid: HF kan vätebinda. Däremot kan inte analogen vätebromid HBr vätebinda eftersom brom inte är tillräckligt elektronegativ.
Ammoniak: NH3 kan vätebinda.
Karboxylsyror: exempelvis ättiksyra, CH3COOH kan vätebinda.
Alkoholer: exempelvis etanol, CH3CH2OH kan vätebinda. Däremot kan inte analogen etantiol CH3CH2SH vätebinda eftersom svavel inte är tillräckligt elektronegativ. Isomeren CH3-O-CH3 till etanol har samma summaformel, men föreningen är en eter och sådana har inget väte som sitter direkt på syreatomen. Därför kan etrar inte vätebinda.
Aminer: exempelvis ettylamin, CH3CH2NH2 kan vätebinda. Undantag är tertiära aminer som trimetylamin N(CH3)3 eftersom det inte sitter någon väteatom direkt på kvävet. Analogen etanitiol, CH3CH2SH, kan inte heller vätebinda eftersom svavel inte är tillräckligt elektronegativ.
![]() |
Kloratomen är inte tillräckligt elektronegativ för att skapa ett elektronmoln med så hög täthet att vätebindningar kan skapas. En enskild kloratom kan däremot få tillräckligt tätt elektronmoln genom att ta upp en extra elektron så att en kloridjon skapas.
En lite udda variant av vätebindningar kan därför fås mellan den negativt laddade kloridjonen och vattenmolekyler i lösningen, exempelvis en koksaltlösning.
Bilden till höger är en ögonblicksbild av en simulering. Vätebindningarna är markerade med röda streck. Väteatomer är vita, syreatomer röda och kloridjonen är rosa.
Man kan se vätebindningar mellan vätet i vatten och kloridjonen, liksom vätebindning mellan vätet i en vattenmolekyl och syret i en annan vattenmolekyl.
![]() Elektronmolnet kring en vattenmolekyl är starkt förskjutet från väteatomerna mot syreatomen. |
"Water charge distribution" av Martin Chaplin![]() |
Atomslagen N, O och F är de mest elektronegativa atomslagen i hela periodiska systemet. Elektronegativa atomer har förmågan att dra till sig elektroner.
I vatten sitter vätet på en syreatom. Vätet har en kärna med laddningen +1 och en elektron med laddningen –1. En fri väteatom har därför nettoladdningen 0. Syret drar till sig elektronmolnet mycket effektivt, vilket leder till att det blir ett positivt laddningsöverskott δ+ på väteatomen. Vatten har två väteatomer, som sitter på syret. Även den andra väteatomen får ett positivt laddningsöverskott δ+. På motsvarande sätt får syreatomen ett dubbelt negativt laddningsöverskott 2δ–.
Det positiva vätet i en vattenmolekyl kan binda till det negativa syret i en annan vattenmolekyl med så kallad vätebindning. Bindningen är ovanligt stark för att vara en intermolekylär bindning. Det beror på att vätet är nästan ”naket” när elektronmolnet dragit sig undan så effektivt från vätet. Därmed kan vätet komma mycket nära syreatomen i den angränsande vattenmolekylen, vilket gör att den elektrostatiska attraktionen blir extra stark.
![]() |
Vätebindningarna i vatten. |
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild |
Vatten är det viktigaste lösningsmedlet, inte bara inom kemin, men också för livet på jorden. Vattnet har nämligen speciella egenskaper som beror på vätebindningarna mellan molekylerna.
På grund av polariteten hos vätebindningarna är vatten ett utmärkt lösningsmedel för polära ämnen såsom salter och organiska ämnen med polära grupper. Den vinklade formen hos vattenmolekylen ger en hexagonal struktur hos iskristallerna när vattnet fryser, vilket återspeglas i snöflingornas sexkantiga form. Iskristallerna hålls samman av vätebindningar. Vätebindningarnas styrka gör också att vattnets kokpunkt är mycket högre än den annars skulle vara.
Vårt genetiska arv är kodat i DNA. Där finns basparen AT (Adenin och Tymin) och GC (Guanin och Cytosin). Det är viktigt att A verkligen parar med T och att G verkligen parar med C, annars skulle det bli oordning i den genetiska koden.
![]() Basparning av Adenin och Tymin. |
![]() Basparning av Guanin och Cytosin. |
"Base pair Adenine Tyhmine" av Yikrazuul" ![]() |
"Base pair Guanine Cytosine" av Yikrazuul" ![]() |
Parningen blir rätt tack vare att A och T parar med två vätebindningar, men G och C parar med tre vätebindningar.