En märklig planta

Kemisk bakgrund

Bakpulver

Foto: © Svante Åberg

I bakpulvret finns bikarbonat och en syra, syran löst i vatten gör att vätejoner finns tillgängliga. När bakpulvret blandas med vatten så reagerar bikarbonat (HCO3-) med vätejoner (H+) och kolsyra (H2CO3) bildas.

H+  + HCO3-  H2CO3 
vätejoner   bikarbonat   kolsyra

Av kolsyran bildas vatten och koldioxid.

H2CO3(aq)  H2O(l)  + CO2(g) 
kolsyra   vatten   koldioxid

Koldioxid är en gas och gasmolekyler är rörligare och tar mer plats än molekyler i fast form som ligger tätt sammanpackade. När gasbildningen börjar är det alltså gasmolekylerna som "studsar runt" inne i ballongen. Detta gör att ett övertryck bildas i ballongen och den blåses upp till en viss del. Samma sak händer med kondomen som då "reser sig" upp ur jorden. Brustabletter innehåller även det bikarbonat och en syra.

Natriumvätekarbonat

Genom att leda ned koldioxid i en kall, mättad sodalösning kan man framställa natriumvätekarbonat, NaHCO3, eller bikarbonat som det också kallas.

Na2CO3  + H2O  + CO2(g)  2 NaHCO3(s) 
natriumkarbonat (soda)   vatten   koldioxid   natriumvätekarbonat

Natriumvätekarbonatet faller ut i fast form p.g.a. sin låga löslighet. I naturen kan man finna det i sodasjöar, avlagrat tillsammans med soda.

Alla vätekarbonater sönderdelas väldigt lätt vid upphettning.

2 NaHCO3(s)  Na2CO3  + H2O  + CO2(g) 
natriumvätekarbonat   natriumkarbonat (soda)   vatten   koldioxid

Den koldioxidutveckling som då bildas utnyttjas när man använder natrium- eller kaliumvätekarbonater som pulverformiga eldsläckare. Gasen kväver elden, som kräver syretillgång för att brinna. Eftersom natriumvätekarbonat är svagt basiskt (pH" 8) så är det bra att använda om man är "sur i magen". Natriumvätekarbonat används även vid bakning. Man utnyttjar den koldioxid som avges när vätekarbonater blandas med en syra. Koldioxiden gör att kakan jäser. Rent natriumvätekarbonat kan endast användas om "smeten" den tillsätts i innehåller sura tillsatser i annat fall använder man sig av bakpulver. Bikarbonat kan, i för stor mängd, ge en bismak och brunfärgning. Det passar därför bra att använda i pepparkakor.

Bakpulver

Bakpulver innehåller natriumvätekarbonat, NaHCO3 (föråldrat namn, natriumbikarbonat) och en syra. De sura fosfaterna krävs för att vätekarbonatet ska bilda kolsyra som avger koldioxid. I de bakpulvren som nu säljs i affärerna ingår oftast två olika sura fosfater (ex. natriumdivätefosfat, NaH2PO4 och dinatriumvätefosfat, Na2HPO4) vilket gör att bakpulvret blir dubbelverkande. Koldioxidutvecklingen bildar redan vid rumstemperatur ett antal startbubblor som sedan förstoras när mer koldioxid avges vid ugnstemperatur.

Koldioxid i solsystemet

På planeterna Venus och Mars är koldioxid den vanligaste gasen. I torr luft på planeten Jorden är koldioxid den fjärde vanligaste gasen näst efter kväve, syre och argon. När de stora oceanerna bildades flyttades en stor del av koldioxiden från den tidiga atmosfären till vattnet där den löstes upp. Nu återfinns stora delar av den tidigare koldioxiden som karbonater i berggrunden. När solens strålar kommer som kortvågigt ljus genom atmosfären har den inga problem att ta sig igenom koldioxiden och komma ner till jordens yta och värma upp den, problemen uppstår när koldioxiden ska tillbaka. Då har det inkommande ljuset övergått till långvågig värmestrålning, vilken absorberas av koldioxiden. Denna infångade energi värmer upp atmosfären i en process som kallas för växthuseffekten. Växthuseffekten inverkar i sin tur på jordens klimat.

Koldioxid - en viktig komponent i kolets kretslopp

Koldioxid är en död form av kol, men den är för det inte overksam. Koldioxid finns alltid i vår närvaro. Vid förbränning (cellandning) av kolföreningar blir koldioxid tillsammans med vatten restprodukter.

C-föreningar + O2(g)  H2O  + CO2(g)  + energi
kolföreningar   syrgas   vatten   koldioxid   energi

Detta sker exempelvis i vår kropp när födan bryts med och omvandlas till energi. Den koldioxid som produceras transporteras via blodet iväg till lungorna, där gasutbyte sker och vi andas ut koldioxiden samtidigt som nytt syre tas upp av blodet och skickas ut i kroppen för att förbränningen ska fortgå. Restprodukterna tas sedan upp av växter som genom en omvänd process, fotosyntes, använder sig av koldioxiden och vattnet för att bilda kolhydrater för sin tillväxt. Växterna avger sedan syre som människan i sin tur kan använda vid förbränning.

H2O  + CO2(g)  + energi C-föreningar + O2(g) 
vatten   koldioxid   energi   kolföreningar   syrgas

Fördjupning

Natriumvätekarbonat

Natriumvätekarbonat kallas också natriumbikarbonat, eller helt enkelt bikarbonat.

Vätekarbonatet i jämvikt med koldioxid och karbonater finns överallt i naturen

Vätekarbonat finns nästan överallt i naturen eftersom det är nära kopplat till koldioxid, som ju finns i atmosfären. Koldioxiden löser sig i vatten och bildar då kolsyra. Kolsyran står sedan i syra-basjämvikt med vätekarbonat.

Vätekarbonatet ingår i kolets kretslopp på grund av jämvikten med kolsyra. Vid matsmältningen bryts maten ned till bland annat koldioxid och vatten. Koldioxiden förs bort med blodet till lungorna. Vi andas sedan ut koldioxiden.

Växterna gör tvärtom. De tar upp koldioxid via sina klyvöppningar och koldioxiden löser sig i cellvätskorna. Där står koldioxiden också i jämvikt med vätekarbonat. I fotosyntesen binds koldioxiden/vätekarbonatet och tillsammans med vatten och solenergi bildas sockerarter som bygger upp växterna.

Kalksten är en bergart av mineralet kalciumkarbonat. Kalciumkarbonat är svårlöslig, men kan reagera med surt vatten. Surt regn får kalkstenen att lösas upp. Då bildas vätekarbonat. I havet finns stora mängder koksalt, som ju innehåller natriumjoner. Man kan därför säga att upplöst kalksten som hamnar i havet finns där i form av natriumvätekarbonat.

Vätekarbonat bildar koldioxid tillsammans med syra

Om man har karbonat i någon form, vare sig det är vätekarbonat eller karbonat, så får man koldioxidutveckling om man tillsätter syra. Följande reaktion sker:

H+ + HCO3 → H2CO3(aq) → CO2(g) + H2O(l)

från vätekarbonat, respektive

2 H+ + CO32– → H2CO3(aq) → CO2(g) + H2O(l)

från karbonat.

Detta är ett sätt att testa om ett salt innehåller vätekarbonat eller karbonat.

Vätekarbonat sönderfaller vid 200 C

Förutom att reaktionen med syra kan ge koldioxidutveckling, så kan även vätekarbonat sönderdelas av hög värme. Vid temperaturer över 200 C sker följande:

2 NaHCO3(s) → Na2CO3(s) + H2O(g) + CO2(g)

Man får även här koldioxidutveckling. Eftersom natriumkarbonat är ett stabilt ämne, så avges bara en koldioxid av två molekyler vätekarbonat.

Men om temperaturen skulle vara så hög som över 850 C, så fortsätter sönderfallet till natriumoxid, det vill säga även den andra koldioxiden avges:

Na2CO3 → Na2O(s) + CO2(g)

Bikarbonat används vid bakning

Bikarbonat (= natriumvätekarbonat) används som hävningsmedel vid bakning. Bikarbonat ingår också i bakpulver tillsammans med sura ämnen som kan få vätekarbonatet att avge koldioxid. Det är koldioxidgasen som får bakverket att bli poröst.

I recept där bikarbonat används behövs något surt som gör att vätekarbonatet kan bilda koldioxid, till exempel fil. Restprodukten natriumkarbonat är också lite bitter och tvålaktig i smaken. Därför behövs sura ingredienser i bakverket.

Övrig användning av vätekarbonat

Natriumvätekarbonat finns i brustabletter, oftast tillsammans med citronsyra. När tabletten läggs i vatten löses vätekarbonat och syra upp, så att de kan komma i kontakt med varandra och reagera. Resultatet blir kraftig koldioxidutveckling.

En bisarr och rätt grym metod att bli kvitt kackerlackor är att mata dem med bikarbonat. I kackerlackans mage utvecklas koldioxid som får insekten att svälla upp och spricka.

Natriumvätekarbonat sägs också kunna används för att bekämpa svamptillväxt.

Allmänt gäller att ämnen som används för rengöring av icke-feta fläckar är basiska. Även natriumvätekarbonat kan användas för fläckborttagning, till exempel av rostfläckar.


Salt med både sura och basiska egenskaper

Natriumvätekarbonat är ett salt med övervägande basiska egenskaper. Saltet är amfotert, dvs. kan fungera både som syra och som bas. Vätekarbonatet fungerar som bas genom att ta upp en vätejon kring pH 6,35 och övergår då till kolsyra. Det kan också fungera som syra genom att avge en vätejon kring pH 10,33 och övergå till karbonat.

kolsyra pKa1,app = 6,35 vätekarbonat pKa2 = 10,33 karbonat
H2CO3(aq) H+ + HCO3 2 H+ + CO32–

Notera: Värdet pKa1,app =6,35 ovan är ett apparent pKa-värde för kolsyra som egentligen avser summan av kolsyra H2CO3(aq) och löst koldioxid CO2(aq) i jämvikt med varandra i lösningen. Mängden löst koldioxid är betydligt större än den faktiska mängden kolsyra.

Syra-basegenskaperna gör vätekarbonat till en pH-buffert

En pH-buffert fungerar så att den förbrukar tillsatt syra eller bas och stabiliserar på så vis pH-värdet. Syra-basreaktionerna för vätekarbonatet sker kring pKa-värdena pH 6,35±1 och pH 10,33±1. Det är kring dessa värden som den buffrande förmågan finns.

Vätekarbonat finns till exempel i blodet, där pH ligger mellan 7,35 och 7,45, det vill säga aningen åt det basiska hållet. Vid pH 7,4 är jämvikten 92 % vätekarbonat och 8 % kolsyra (och 0 % karbonat).

Vätekarbonat buffrar också naturliga vatten. Koldioxid som finns i atmosfären och som bildas vid nedbrytning av organiskt material kan lösa sig i vattnet. Kolsyran står då i kemisk jämvikt med vätekarbonat. Dessutom finns mineraler som är karbonater, främst kalksten. Kalkstenen kan lösas upp av syror och bilda vätekarbonat. Allt detta tillsammans ger en blandning av kolsyra, vätekarbonat och karbonat där vätekarbonatet är den viktigaste lösta jonen som buffrar pH.

Vätekarbonat finns i tabletter mot sur mage. Den pH-buffrande förmågan gör att en alltför sur mage motverkas.

Man använder också vätekarbonat i pH-buffertar på kemilab. Då används den oftast tillsammans med andra amfotera salter för att utöka den buffrande förmågan över ett större pH-intervall, inte bara kring pH 6,35 och 10,33.

Koldioxid-karbonatsystemet

Koldioxid tillsammans med vatten ingår i en serie former av kolsyra och karbonater som står i jämvikt med varandra. Förutom koldioxid och vatten som bildar kolsyra finns också syra-basjämvikterna mellan kolsyran och dess salter. Vi har följande:

CO2(g) CO2(aq) löslighetsjämvikt
CO2(g) + H2O(l) H2CO3(aq) jämvikt för bildning av kolsyra
H2CO3(aq) HCO3 + H+ syra-basjämvikt
HCO3 CO32– + H+ syra-basjämvikt

Den första jämvikten är en löslighetsjämvikt där koldioxidgas löser sig i vatten. Den andra jämvikten är en reaktion mellan koldioxid och vatten som bildar kolsyra. Den tredje och fjärde jämvikten är syra-basjämvikter där vätejoner ingår.

Alla dessa jämvikter är kopplade. Det innebär att en förändring i halten koldioxid i atmosfären fortplantar sig genom hela systemet så att till exempel halterna vätekarbonat och karbonat också påverkas.

Men eftersom vätejonerna också ingår i jämvikterna, så påverkas koldioxid-karbonatsystemet av sura och basiska ämnen i lösningen. pH är därför en viktig faktor.


Beräkningsexempel på koldioxid i jämvikt med vatten

Vi ska göra beräkningar på jämvikten mellan koldioxid i luften och kolsyra och karbonater i vatten. Värdena gäller för sötvatten vid rumstemperatur. Det är viktigt att känna till att jämviktskonstanterna är starkt beroende av temperatur och salthalt. Därför blir värdena annorlunda om man ska räkna på havsvatten eller kallare vatten.

Jämvikten mellan koldioxid i luften och i vattnet

Henrys lag tillämpad på koldioxid lyder KH = PCO2/[CO2(aq)] = 29,41 atm/(mol dm–3)

Koldioxidhalten 0,0387 % i luften vid 1 atmosfär ger PCO2 = 3,87·10-4 atm

Koncentrationen löst koldioxid i vattnet är då [CO2(aq)] = PCO2/K = 3,87·10-4 atm / (29,41 atm/(mol dm–3)) = 1,316·10-5 mol dm–3 ≈ 1,3·10-5 mol dm–3

Jämvikten mellan löst koldioxid i vattnet och kolsyra

Jämviktskonstanten för bildningen av kolsyra är K = [H2CO3(aq)]/[CO2(aq)] = 1,3·10-3

Halten kolsyra blir då [H2CO3(aq)] = [CO2(aq)] · 1,3·10-3 = 1,316·10-5 mol dm–3 · 1,3·10-3 = 1,711·10-8 mol dm–3 ≈ 1,7·10-8 mol dm–3

Första protolyssteget av kolsyran

Jämviktskonstanten för bildningen av vätekarbonat ur kolsyran är KA1 = [H+][HCO3]/[H2CO3(aq)] = 2,00·10-4 mol dm–3

Halten vätekarbonat blir då [HCO3] = 2,00·10-4 mol dm–3 · [H2CO3(aq)] / [H+]) = 2,00·10-4 mol dm–3 · 1,711·10-8 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / [H+]

Antag att pH är 8,14, vilket innebär [H+] = 10-8.14 mol dm–3

Vi får [HCO3] = 3,421·10-12 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / (10-8.14 mol dm–3) = 4,723·10-4 mol dm–3 ≈ 4,7·10-4 mol dm–3

Andra protolyssteget av kolsyran

Jämviktskonstanten för bildningen av karbonat ur vätekarbonatet är KA2 = [H+][CO32–]/[HCO3] = 4.69·10-11 mol dm–3

Halten karbonat blir då [CO32–] = 4,69·10-11 mol dm–3 · [HCO3] / [H+] = 4,69·10-11 mol dm–3 · 4,723·10-8 mol dm–3 / (10-8.14 mol dm–3) = 3,057·10-6 mol dm–3 ≈ 3,1·10-6 mol dm–3

Le Chateliers princip

Henri Le Chatelier var en fransk kemist under senare delen av 1800-talet. Han arbetade som gruvingenjör i franska statens tjänst och blev så småningom professor, därefter ledamot i både Franska vetenskapsakademin och utländsk ledamot i svenska Vetenskapsakademien. Bland annat genomförde han studier över kemisk jämvikt. Han kom då fram till den princip som bär hans namn:

Om ett kemiskt system, där jämvikt råder, påverkas av en förändring i koncentration, temperatur eller totaltryck, kommer jämvikten att ändras så att förändringen motverkas.

Den kemiska jämvikten gör alltså motstånd mot förändringar, men kompenserar inte helt för den yttre påverkan som systemet utsatts för. Om till exempel etanol ingår som ett reagerande ämne i en jämvikt, och vi tillsätter mera etanol, så kommer reaktionen efter störningen av förbruka etanol. Men det blir inte riktigt hela tillsatsen av etanol som förbrukas, utan halten etanol i blandningen kommer faktiskt att vara lite högre sedan den nya jämvikten har ställt in sig.

Exempel på tillämpning av Le Chateliers princip

Estrar är väldoftande ämnen som kan framställas genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra ⇄ ester + vatten

Esterjämvikten är inte så starkt förskjuten åt höger. För att driva jämvikten hårdare åt höger kan man ta bort vatten som bildats. Det kan ske genom att man tillsätter torkmedel av till exempel vattenfri natriumsulfat. Natriumsulfatet binder upp vattnet så att det inte längre är tillgängligt i esterjämvikten.

Det vatten som tas bort ersätts, enligt Le Chateliers princip, genom att reaktionen går åt höger. Det innebär att ester bildas, samtidigt som alkohol och syra förbrukas. Det nya vatten som bildas tas också upp av torkmedlet, så reaktionen kan fortsätta ytterligare åt höger så att ännu mer ester bildas.

Estrar är opolära ämnen som är olösliga i vatten. Estern flyter därför som ett skikt ovan på vattenlösningen. Däremot är alkoholen och syran vattenlöslig. När man är nöjd med reaktionen, så kan skiktet av ester på ytan dekanteras av och man får ester i ganska ren form.


Exempel med bildning av ammoniak ur kvävgas och vätgas

Ett exempel är reaktionen när kvävgas reagerar med vätgas till ammoniakgas i den så kallade Haberprocessen:

N2(g) + 3 H2(g) ⇄ 2 NH3(g) + 92 kJ

Detta är en jämvikt mellan ämnen i gasform där vi har 4 delar gas i vänsterledet och 2 delar gas i högerledet. Reaktionen åt höger halverar antalet mol gas, vilket ger minskat gastryck om volymen hålls konstant. Reaktionen åt höger är exoterm, vilket innebär att inneboende energi hos ämnena avges och ombildas till värme.

Vi ska nu tillämpa Le Chateliers princip på denna jämvikt med några olika fall. Utgångspunkten är att systemet är i jämvikt. Därefter rubbar jämvikten på något sätt. Sedan förutsäger åt vilket håll reaktionen kommer att ske.

Tillförsel av kvävgas eller vätgas

I reaktionsformeln finns kvävgas och vätgas i vänsterledet. Om vi pumpar in mer kvävgas eller vätgas, så blir det "för mycket" kvävgas/vätgas i vänster led i förhållande till jämviktsläget. Reaktionen kommer att gå åt höger så att kvävgas och vätgas förbrukas. Det leder till att det bildas ammoniak. Dessutom avges värme, vilket gör att temperaturen höjs i systemet.

Tillförsel av ammoniak

Om vi pumpar in ammoniak blir det "för mycket" ammoniak i högerledet. Reaktionen sker då åt vänster så att mängden ammoniak minskar och det bildas mera kvävgas och vätgas. Reaktionen är endoterm, det vill säga den förbrukar energi. Därför sjunker temperaturen.

Bortförsel av ammoniak

Om vi på något sätt kan ta bort ammoniak från reaktionsblandningen, till exempel med en reaktion som binder upp ammoniakgas så att den inte kan delta i jämvikten längre, så blir det "för lite" ammoniak i högerledet. Det leder till att reaktion sker åt höger för att ersätta ammoniak som försvunnit. Kvävgas och vätgas förbrukas så att mängden av dem minskar. Reaktionen åt höger är exoterm, vilket leder till att temperaturen ökar.

Vi värmer reaktionsblandningen

Genom att värma reaktionsblandningen kan vi öka dess temperatur. Enligt Le Chateliers princip reagerar då systemet för att motverka temperaturökningen. Reaktionen sker då i endoterm riktning, det vill säga åt vänster. Det medför att ammoniak förbrukas och det bildas kvävgas och vätgas.

Ökning av trycket genom att minska volymen

Detta är en gasjämvikt, vilket innebär att systemet är känsligt för ändringar i volymen. Gaskoncentrationen ökar när vi komprimerar gasen genom att minska volymen.

Detta leder till en ökning av gastrycket. Systemet reagerar genom att motverka tryckökningen. Eftersom det är 4 delar gas i vänsterledet, men bara 2 delar gas i högerledet, så leder en reaktion åt höger till att gastrycket minskar. Minskningen av volymen gör därför att kvävgas och vätgas förbrukas och ammoniak bildas. Samtidigt är reaktionen åt höger exoterm, vilket gör att temperaturen ökar.

Minskning av trycket genom att öka volymen

Detta är motsatsen till föregående fall. När volymen ökar, så minskar gastrycket. Systemet motverkar tryckminskningen genom att reaktionen sker åt vänster så att antalet mol gas ökar. Reaktionen åt vänster är endoterm, vilket ger sänkt temperatur.

Den nya jämvikten som ställer in sig

Även om systemet motverkar den rubbning av systemet som vi orsakade, så kan systemet inte fullt ut kompensera för den påverkan som vi orsakade.

Om vi till exempel pumpar in extra kvävgas, så sker reaktionen åt höger så att kvävgas förbrukas. Men koncentrationen kvävgas, sedan den nya jämvikten ställt in sig, kommer inte att återgå helt till den koncentration som rådde vid den ursprungliga jämvikten, utan det blir kvar en rest av den påverkan som vi skapade. Därför är koncentrationen av kvävgas aningen högre i den nya jämvikten.

Detta kompenseras av att koncentrationen av vätgas är något lägre i den nya jämvikten än i den ursprungliga. På motsvarande sätt blir koncentrationen av ammoniak något högre i den nya jämvikten, än i den ursprungliga.

Inverkan av trycket

Det som styr jämvikten, vad gäller de ingående ämnena, är ämnenas koncentrationer. Jämviktens läge har att göra med reaktionshastigheten åt höger i jämförelse med reaktionshastigheten åt vänster. Eftersom kemisk reaktion sker i samband med att partiklar kolliderar, så är hastigheten koncentrationsberoende. Högre koncentration, ger högre hastighet.

Det är bara gaser som påverkas av trycket. Det beror på att gaser komprimeras av ett högre tryck, men vätskor och fasta ämnen är nästan inte alls komprimerbara. Därför är effekten av tryck på jämvikten bara något som man behöver ta hänsyn till när man har gaser i systemet.

Exempelvis påverkas inte jämvikten mellan fast och löst natriumklorid av trycket.

NaCl(s) ⇄ Na+(aq) + Cl(aq)

NaCl(s) är ett fast ämne vars volym inte ändras märkbart vid ändrat tryck. Natriumjonerna och kloridjonerna i vattenlösning påverkas inte heller eftersom vattenvolymen inte påverkas av trycket, i varje fall inte så länge som vattnet är i vätskeform.

Fysikaliska reaktioner

Le Chateliers princip är utformad för kemiska jämvikter. Principen fungerar dock i princip även för fysikaliska förändringar, till exempel övergångar mellan olika aggregationsformer.

För fysikaliska förändringar blir dock bilden rätt komplicerad när man behöver ta hänsyn till att mekaniskt arbete utförs, till exempel när gaser expanderar. Även temperaturförändringar vid adiabatisk expansion eller kompression inverkar. Då är vi inne på termodynamik, vilket vi inte tar upp närmare just nu.

Koldioxid

Egenskaper

Koldioxid är en luktlös gas, men vid höga koncentrationer kan man få en sur smak i munnen som beror på att gasen löser sig i saliven och bildar kolsyra. Inandning av koldioxid i onormalt höga halter kan leda till huvudvärk, illamående och kräkningar. Är halten tillräckligt hög kan inandning leda till medvetslöshet och till och med döden.

Koldioxiden är med sin molmassa 44 g/mol tyngre än syrgas (32 g/mol) och kvävgas (28 g/mol). Därför sjunker koldioxiden ner mot marken om den släpps ut. Med tiden diffunderar koldioxiden och blandar sig med luften till dess halten är lika överallt, men det tar ett tag.

Koldioxid underhåller inte förbränning. Den kväver därför eld. Så kallade kolsyresläckare innehåller koldioxid under högt tryck. De fungerar genom att koldioxiden tränger undan luftens syre så att elden slocknar.

Kolsyresnö och torris är koldioxidid fast form

Kolsyresnö och torris är en benämning på frusen koldioxid. Torris är kolsyresnö som har komprimerats så att den blivit kompakt.

En bit torris ångar och ryker i rumstemperatur när koldioxiden sublimerar, dvs. övergår direkt från fast till gasform. Kylan gör att luftens fuktighet kondenserar så att synlig dimma bildas.

Man kan lägga ner bitar av torris i bål (som man dricker) för att få en festligt effekt. Torrisen kolsyresätter samtidigt drycken. Var bara försiktig att så att du inte sätter en bit torris i halsen. Den är nämligen mycket kall, - 78,5 °C. Tag aldrig i torris med händerna!

Ett recept för att tillverka dimma är att släppa ned torris i varmt vatten. Vattnet får torrisen att sublimera till gas snabbare, men dimman bildas av vattendroppar.

Kolsyresnö bildas också när man använder en kolsyresläckare. Brandsläckaren innehåller komprimerad koldioxid under högt tryck. När man släpper ut gasen sjunker temperaturen hastigt och så mycket att koldioxiden fryser till kolsyresnö vid –78,5 °C. Förutom att koldioxiden kväver elden så bidrar kyleffekten till att elden minskar i intensitet.

Tillverkning och användning

Koldioxid fås bland annat som biprodukt vid förbränning av kolhaltiga bränslen och vid upphettning av naturliga karbonat, särskilt vid "kalkbränning" (upphettning av kalciumkarbonat, kalksten). Kalkbränningen ger bränd kalk, (kalciumoxid, CaO):

CaCO3(aq) CaO(s) + CO2(g)
kalciumkarbonat kalciumoxid koldioxid

Den bildade koldioxiden renas och kondenseras, och kan också överföras till kolsyresnö som i sin tur kan pressas till torris.

Gasformig koldioxid används vid framställning av kolsyrade drycker och eldsläckningsanläggningar, medan torris främst används till kylning, till exempel när glass ska transporteras.

En mycket speciell tillämpning är koldioxidlasrar där koldioxiden fungerar som medium för ljusstrålen när den fås att svänga i fas. Koldioxidlasern producerar ljus i det infraröda området vid våglängderna 9,4 och 10,6 mikrometer (μm)

Ett oorganiskt ämne med stor biologisk betydelse

Koldioxiden ingår i kolets kretslopp i naturen. Alla organismer som förbrukar syre i cellandningen producerar koldioxid. Människan andas, liksom djuren, in luftens syre som transporteras ut i kroppen via blodet till cellerna där förbränningen av maten sker. Maten bryts ned till bland annat koldioxid och vatten. Blodet transporterar koldioxiden tillbaka till lungorna och vi andas sedan ut den.

C-föreningar + O2(g) H2O + CO2(g) + energi
kolföreningar syrgas vatten koldioxid energi

I växterna sker den motsatta processen, att bladen tar upp koldioxid som med hjälp av energin från solljuset reagerar med vatten. Då bildas bland annat sockerarter. Restprodukt vid fotosyntesen är syrgas som avges via bladens klyvöppningar.

H2O + CO2(g) + energi C-föreningar + O2(g)
vatten koldioxid energi kolföreningar syrgas

På detta sätt vandrar kolet i ett kretslopp mellan växter och djur. Kolet är i form av koldioxid när det finns i luften. Men i organismerna binds kolet upp i organiska föreningar såsom stärkelse, socker, fetter och proteiner. Koldioxid betecknas som ett oorganiskt ämne, dvs. ett ämne som inte är biologiskt. Men kolet från koldioxiden som binds i organiska föreningar som har en biologisk funktion.

Ökande koldioxidhalter i atmosfären försurar haven

Genom industrialiseringen, och då speciellt förbränningen av fossila bränslen, har sura gaser bidragit till försurning. Speciellt koldioxiden har blivit ett problem. Den naturliga mängden kol i kolets kretslopp har fyllts på med kol från de fossila bränslena som har legat i tryggt förvar i jorden. Koldioxidhalten i atmosfären har ökat dramatiskt.

Försurningen sker när koldioxid som löser sig i vattnet bildar kolsyra. Kolsyra får kalken i korallrev och i djur med kalkskelett att lösas upp. Effekterna är så stora att hela ekosystem är på väg att slås ut.

Ökande koldioxidhalter i atmosfären orsakar global uppvärmning

Eftersom koldioxid är en så kallad växthusgas, så orsakar ökningen av koldioxid i atmosfären en förstärkt växthuseffekt. Beräkningar av växthuseffekten måste ta hänsyn till många komplicerade samband. Därför har forskarna av ren försiktighet undvikt att komma med kategoriska påstående om hur kraftig effekten är. Men när nu växthuseffekten har slagit till på allvar kan vi se att den är långt kraftigare än förväntat. Det finns inte heller någon tvekan om att den globala uppvärmningen till allra största delen är orsakad av människans verksamhet som ökat på koldioxidhalten i atmosfären.


Koldioxid i form av vätekarbonat stabiliserar pH

Medan koldioxiden transporteras av blodet reagerar det med vattnet som finns i blodet och bildar kolsyra, vätekarbonat och karbonat. Nästan all koldioxid är i form av vätekarbonat i blodet. Det beror på att blodets pH ligger på cirka 7,4. Vätekarbonatet hjälper till att stabilisera blodets pH så att det inte ska variera alltför mycket. Detta är viktigt för att vi ska må bra. Kroppens reglering och vätekarbonatets pH-buffrande verkan gör att blodet pH håller sig mellan 7,35 och 7,45.

Koldioxiden har också en motsvarande bufferteffekt på pH i naturen. Ett problem är dock att i första reaktionsstegen när koldioxiden reagerar med vatten, så bildas kolsyra. Kolsyran sänker pH. Det är först när en del av kolsyran förbrukas av bas, till exempel i reaktionen med kalk, som det pH-buffrande vätekarbonatet bildas. Ökande koldioxidhalter i luften bidrar därför till försurning av hav och vattendrag.

Koldioxid deponerad som mineraler

På planeterna Venus och Mars är koldioxid den vanligaste gasen. I torr luft på planeten Jorden är koldioxid den fjärde vanligaste gasen näst efter kväve, syre och argon. När de stora oceanerna bildades flyttades en stor del av koldioxiden från den tidiga atmosfären till vattnet där den löstes upp. Nu återfinns stora delar av den tidigare koldioxiden som karbonater i berggrunden.

Av allt kol som finns på jorden är bara en mycket liten del som fri koldioxidgas i atmosfären. Koldioxiden i luften står i jämvikt med koldioxid i vattenlösning. Koldioxiden i vattnet reagerar till kolsyra som reagerar vidare till vätekarbonat (HCO3) och karbonat (CO32–). Karbonatjonerna bildar svårlösliga salter tillsammans med till exempel kalciumjoner (Ca2+) och faller ut som fasta mineraler. Det mesta kolet är bundet i berggrunden som karbonater, men också som en försvinnande liten andel fossil stenkol, brunkol, olja och naturgas. Dessutom har vi kol som är bundet som biomassa i ekosystemen, inklusive förmultnande material i marken.

Fördelningen är följande:

PlaceringVikt kolAndel
atmosfären7,5·1011 ton0.001%
ekosystem2,1·1012 ton0.002%
haven3,8·1013 ton0.038%
berggrunden1,0·1017 ton99.959%

Koldioxid som superkritisk vätska

Vid tillräckligt högt tryck och temperatur övergår gaser till att bli superkritiska vätskor. Tillståndet är något som kan betecknas både som gas och vätska samtidigt. Molekylerna är rörliga nästan som i en gas, dvs diffunderar snabbt. Samtidigt är förmågan att lösa ämnen god, som i en vätska. Dessa egenskaper är till god nytta vid superkritisk extraktion. För koldioxid inträffar det superkritiska tillståndet vid 73,76 bars tryck och en temperatur av endast 31,04 °C. Det gör koldioxiden mycket lämpad för användning som superkritisk vätska.

Karbonater

Karbonater i naturen är mineraler som bildar basiska bergarter. De innehåller karbonatjonen, CO32–. Karbonaterna är alltså salter, men de är i allmänhet svårlösliga. Den positiva jonen är en metalljon, ofta tvåvärd.

Följande mineraler är karbonater:

Kalcit (Kalkspat) CaCO3
Magnesit MgCO3
Siderit (Järnspat, Chalybit) FeCO3
Rodokrosit (Manganspat) MnCO3
Smithsonit (Zinkspat, Calamin) ZnCO3
Dolomit CaMg(CO3)2
Ankerit Ca(Mg,Fe)(CO3)2
Aragonit CaCO3
Witherit BaCO3
Strontianit SrCO3
Cerussit PbCO3
Malakit Cu2CO3(OH)2
Azurit (Chessylit) Cu2(CO3)2(OH)2

Ett mineral betecknar en kemisk förening som ibland förekommer i ren form i naturen och ibland bildar bergarter tillsammans med andra mineraler.

Kalcit är ett mineral med stor utbredning. Det förekommer i kalkhaltiga sediment, kalksten, och i metemorfa (omvandlade) bergarter, marmor. Kalksten bildas när fossilt material från t ex skelett och snäckskal sedimenterar. Högt tryck och lång tid omvandlar så småningom sedimentet till mineral och bergarter. Krita, kritkalksten, är också en form av kalksten. Den har bildats av skalen från fritt omkringsimmande organismer i havet. Det mesta av kritkalkstenen bildades under kritaperioden. Marmor är kristallin kalksten, en omvandlad bergart.


material på avancerad nivå kommer att läggas in här

Syra är reagens på karbonater

Syra är ett reagens på karbonat- och vätekarbonatjoner. Kännetecknet på karbonat är att när syran tillsätts, så sker gasutveckling av koldioxid. Även karbonater i fast form ger koldioxidutveckling tillsammans med syra.

Detta test används inte bara av kemister, utan även av t.ex. geologer. Många mineraler i naturen är nämligen karbonater. Om du droppar saltsyra på kalksten så börjar det bubbla av koldioxid samtidigt som stenen löses upp.

Observera att syran måste vara tillräckligt stark. Saltsyra (HCl) är en bra syra för detta ändamål.


Jämvikt från karbonat till koldioxid

Reaktionen åstadkoms via en serie kemiska jämvikter listade nedan, som drivs åt höger. Ämnena i serien är karbonat (CO32-), vätekarbonat (HCO3-), kolsyra och koldioxid (CO2).

1: CO32-(aq) + H+(aq) HCO3-(aq)
2: HCO3-(aq) + H+(aq) H2CO3(aq)
3: H2CO3(aq) H2O(l) + CO2(aq)
4: CO2(aq) CO2(g)

Om man ökar halten vätejoner i lösningen, H+, så driver man de två första jämvikterna åt höger. Det medför att halten H2CO3(aq) (kolsyra) ökar vilket driver jämvikt 3 åt höger. Det medför i sin tur att halten CO2(aq) (koldioxid) ökar så att jämvikt 4 drivs åt höger. Summan av kardemumman blir att det bildas koldioxidgas om man surgör en lösning som innehåller karbonat eller vätekarbonat.

En basisk lösning tar upp koldioxid från luften

Motsatsen gäller också. Om man har en basisk vattenlösning, det vill säga en lösning där halten vätejoner är mycket låg, så kommer koldioxid från luften att lösa sig i vattnet och bilda karbonat. Om man vill förvara en basisk lösning en längre tid är det därför viktigt att förvara lösningen i ett slutet kärl för att undvika kontamineringen av koldioxid från luften.

Att en basisk lösning tagit upp koldioxid kan man bevisa genom att tillsätta överskott av syra. Då bildas bubblor av koldioxid.

Men det tar tid innan tillräckligt med koldioxid löst sig eftersom halten koldioxid i luften är så låg. Om du vill testa hur basiska lösningar absorberar koldioxid, vänta då någon vecka innan du undersöker lösningen med tillsatsen av stark syra.

Syra-basreaktion

Syror och baser kan beskrivas som varandras motsatser. Det är nämligen så att en syra ger bort en vätejon, men en bas tar i stället emot en vätejon. Detta gör att syror och baser lätt reagerar med varandra. Man får en så kallad syra-basreaktion.

Ett annat namn för syra-basreaktion är protolys. En väteatom består av en proton i kärnan och en elektron i skalet. När vätet förlorat sin elektron och bildat en vätejon, så återstår bara protonen. Vätejon och proton är därför samma sak.

Ordet "lys" är grekiska och betyder sönderfall. När syran avger sin vätejon sönderfaller den i vätejon + den rest som blir kvar. "Proton" och "sönderfall" ger därför ordet protolys.

Neutralisation


Syra och bas reagerar i neutralisation.
Bild: Svante Åberg

Eftersom syror och baser är varandras motsatser, så har de en förmåga att förbruka varandra när de reagerar. Vid reaktionen förbrukas lika mycket syra och bas. De ämnen som i stället bildas är ofta salt och vatten, men inte alltid. Här är två exempel.

Exempel 1: HCl(aq) + NaOH(aq) → H2O(l) + Na+ + Cl

Natriumjonerna och hydroxidjonerna ger saltet natriumkorid, dvs. vanligt koksalt. I syra-basreaktionen bildas också vatten.

Exempel 2: HCl(aq) + NH3(aq) → Cl + NH4+

Ammoniumjonerna och kloridjonerna ger saltet ammoniumklorid, dvs. salmiak. I denna syra-basreaktion bildas inget vatten.


Definition av syror och baser som protongivare och protontagare

syra = protongivare
bas = protontagare

Arrhenius definierar syra som protongivare

Den som först kom med en definition av syror och baser var den svenske kemisten Svante Arrhenius, vilket han fick Nobelpriset för år 1904. Arrhenius visade på förekomsten av vätejoner i vattenlösning av syror. Han definierade en syra som ett ämne som dissocieras (sönderdelas) i vatten så att vätejoner (H+) bildas.

Brønsted och Lowry definierar bas som protontagare

Den danske kemisten Johannes Nicolaus Brønsted och den engelske kemisten Martin Lowry kompletterade sedan, oberoende av varandra, teorin genom att definiera bas som protontagare. De insåg att baser har förmågan att deprotonera syror, dvs. plocka protoner från syror. Nu hade man en komplett teori som definierade syra och korresponderande bas som samma partikel, förutom skillnaden på en proton.

Syrans reaktion i vattenlösning

En generell beteckning för en syra är HA. H står för grundämnet väte, men A är en beteckning som syftar på syra (engelska Acid). Exempelvis kan HA beteckna väteklorid ,HCl, eller ättiksyra, CH3COOH.

Dissociationen av syran HA sker med reaktionsformeln:
HA → H+ + A

Vi ser att syran HA ger bort sin proton och kvar blir A. Syran HA är alltså en protongivare.

Den frigjorda vätejonen reagerar sedan omedelbart med vatten och bildar en oxoniumjon:
H+ + H2O → H3O+

Basens reaktion i vattenlösning

Basen B har förmågan att ta emot en vätejon (proton). I vattenlösning kommer vätejonen från en vattenmolekyl som har sönderdelats med reaktionsformeln:
H2O → H+ + OH

Den frigjorda vätejonen tas emot av basen i reaktionen:
H+ + B → BH+

Samtidig syra-basreaktion

Protonöverföringen kan ske direkt från syran till basen i en reaktion med formeln:
HA + B → A + BH+

En sådan typ av reaktion kallas för protolys.

Reaktionen kan också ske åt motsatt håll, dvs. att BH+ fungerar som syra när den ger en proton till A som då fungerar som bas:
A + BH+ → HA + B

Som synes kan även joner vara syror och baser, såsom att A är en bas och BH+ är en syra.

Korresponderande syra-baspar

När en vätejon avges av en syra måste det alltid finnas en bas som tar emot den. Det är nämligen så att vätejoner inte kan existera fria. När det samtidigt är så att syran blir en bas när den avger sin vätejon, och basen blir en syra när den tar emot en vätejon, så kan man alltid beskriva syra-basreaktionen på följande sätt:

HA1 + A2 A1 + HA2
syra 1 bas 2 bas 1 syra 2

I reaktionen har vi syra-basparen:
syra 1 ⇄ bas 1 + H+
syra 2 ⇄ bas 2 + H+

Nedan ges några exempel på syra-basparen i ett antal syra-basreaktioner:

syra 1 bas 2 bas 1 syra 2
HCl(aq) + NH3(aq) Cl + NH4+
CH3COOH(aq) + H2O(l) CH3COO + H3O+
CH3COOH(aq) + OH CH3COO + H2O(l)
H2O(l) + NH3(aq) OH + NH4+
H2O(l) + H2O(l) OH + H3O+

Den sista reaktionen i tabellen är intressant för att den visar att vatten kan reagera med sig själv. Denna reaktion kallas vattnets autoprotolys.

Lewis definition av syra som elektrontagare och bas som eletrondonator

syra = tagare av elektronpar
bas = givare av elektronpar

Gilbert N. Lewis definierade syra-basreaktioner som elektronöverföringar ungefär samtidigt som Brønsted och Lowry jobbade med sin definition av protolys.

För Lewis var en bas ett ämne som kunde donera ett elektronpar. En syra var då ett ämne som kunde ta emot ett elektronpar. Lewis definition av syror och baser är en bredare definition som även kan tillämpas på ämnen som inte innehåller väte. Exempelvis är bortrifluorid, BF3, en Lewis-syra som kan reagera med Lewis-basen fluorid, F:
BF3 + F → BF4.

Försurning av haven

Halterna i atmosfären

Koldioxidhalten i atmosfären är mycket låg, bara cirka 0,04 %, men har ändå stor betydelse i miljön. Dels är koldioxiden en växthusgas som höjer jordens temperatur, dels löser sig koldioxid lätt i vattnet och bildar kolsyra.

Halterna koldioxid i luften har ökat sedan industrialismen slog igenom och fortsätter att öka. Anledningen är att vi använder fossila bränslen som tidigare var gömda i marken och inte kom ut i atmosfären, men som nu adderas till den koldioxid som naturligt förekommer som en del av kolets kretslopp mellan växter och djur.

Löslighet och pH i vatten

Lösligheten för koldioxid i vatten är hög därför att den kolsyra som bildas när den reagerar med vattnet sedan reagerar vidare och bildar vätekarbonat. Jämviktsprocesserna gör att det då frigörs plats för att ytterligare koldioxid ska lösa sig och bilda kolsyra. Eftersom kolsyran är en syra sänks pH i vattnet, det blir surare.

Organismer med kalkskelett påverkas

I havet lever många organismer med kalkskelett. Kalken är kemiskt sett kalciumkarbonat, ett basiskt ämne. Karbonatet i skelettet står i jämvikt med löst karbonat i vattnet. Jämvikten innebär att kalken i skelettet både avger och tar emot karbonatjoner från vattnet. Men när vattnet är surt förbrukas karbonat och bildar vätekarbonat, som är en något surare form av karbonat. Detta minskar tendensen för karbonat att bindas till kalkskelettet. Resultatet blir att organismens skelett har svårt att växa till och djuret lider, överlever kanske inte.

Exempel på djur med kalkskelett är musslor, krabbor, koraller, med flera. Speciellt korallreven är illa ute. De utsätts dels för surare vatten, dels för förhöjda temperaturer som de inte tål. Dessutom är korallreven mycket långlivade kolonier som byggs upp under tusentals år och som inte klarar plötsliga förändringar i miljön.

Korallreven är mycket viktiga ekologiska system som ger skydd och underlag för otaliga arter av djur och växter. Den biologiska produktionen på reven är mycket stor. Om reven dör, så försvinner till exempel en stor del av fisken i haven.


Kolets kretslopp i havet och atmosfären

Det uppskattas att cirka 30-40 % av människans utsläpp av koldioxid absorberas av haven och andra vattendrag. Under perioden mellan år 1751 och 1996 beräknar man att ytvattnet i haven har minskat sitt pH från cirka 8,25 till 8,14. Det motsvarar en ökning av vätejonhalten [H+] med 35 %.

Det finns ett ständigt utbyte av koldioxid i sina olika former mellan atmosfären och havet, mellan vatten på olika djup, och mellan sedimenterat och löst kol. Man brukar talar om "koldioxidens biologiska och fysikaliska pumpar".


CO2-cykeln i havet och atmosfären.
CC BY-SA 2.5

Växthuseffekten

Växthuseffekten orsakas av en grupp gaser av vilka de viktigaste är vattenånga, koldioxid, metan, dikväveoxid, ozon och freoner.

Koldioxiden - en växthusgas vi behöver ha koll på

Koldioxid är genomsläppligt för solens synliga strålning, men inte för värmestrålning. Det gör att ljuset passerar genom atmosfären till jordens yta. Samtidigt som ytan värms upp så uppstår infraröd värmestrålning som inte tar sig tillbaka till rymden därför att koldioxidmolekylerna absorberar den. Denna infångade energi värmer upp atmosfären i en process som kallas för växthuseffekten.

Växthuseffekten
Atmosfärens koldioxid fungerar på samma sätt som glaset i ett växthus.
Bild: © Svante Åberg

Koldioxiden är den viktigaste växthusgasen i vår atmosfär. Koldioxiden kan liknas vid glaset i ett växthus. De energirika, kortvågiga solljuset (gult i figuren) passerar glaset/koldioxiden och omvandlas värme när det absorberas i växtligheten och marken. Värmen återutsänds som långvågig värmestrålning (orange i figuren) men denna strålning förmår inte tränga genom glas/koldioxid och hålls därför kvar.

Andra växthusgaser

Syret och kvävet som det finns mycket av i atmosfären är praktiskt taget genomskinliga för den långvågiga värmestrålningen. Därför bidrar syret och kvävet inte nämnvärt till växthuseffekten.

Men det finns andra växthusgaser, exempelvis vatten. Mängden vattenånga i atmosfären varierar mycket. Det är också ett komplicerat samspel mellan vattenånga, molnbildning och temperatur. Molnen reflekterar det synliga, infallande ljuset från solen och minskar på så vis uppvärmningen av jorden. Men molnen bidrar också till att lägga sig som ett täcke över jorden som håller kvar den infraröda värmestrålningen och bidrar till att öka växthuseffekten. Det hela blir mycket komplicerat att räkna på.

Metan är en mycket effektiv växthusgas, men förekommer å andra sidan i små mängder. Bidrag till metan i atmosfären kommer från förmultnande organiskt material, från utvinning av fossila bränslen och från boskapsskötsel. Speciellt i permafrosten i de nordligaste delarna på jordklotet finns mängder med organiskt material som inte har brutits ned fullständigt. När växthuseffekten gör att tundran börjar tina sätter metanproduktionen igång. Det ökar på växthuseffekten så att det tinar ännu snabbare. Det blir en självförstärkande reaktion som kan göra att vi tappar kontrollen över temperaturökningen. Cirka 40 % av alla metanutsläpp som orsakas av människor är kopplade till utvinningen av fossila bränslen. Även sophantering och avloppsvatten ger utsläpp. Att boskap ökar på mängden metan har att göra med deras matsmältning. Idisslande kor pruttar och rapar en hel del metan.

Växthusgasernas betydelse

Det mesta av växthuseffekten är naturlig och har alltid funnits. Den är bra och nödvändig för livet in den form det har på jorden. Jordens medeltemperatur är +15 °C. Utan växthuseffekten skulle medeltemperaturen vara c:a 30 °C lägre. Att vatten (H2O) kan förekomma i olika former är av grundläggande betydelse för många processer på jorden.

Men när vi talar om växthuseffekten menar vi ofta den ökade växthuseffekt som leder till global uppvärmning. Det är själva förändringen som är problematisk.

Om man rangordnar växthusgaserna så bidrar vatten mest till växthuseffekten, därefter koldioxid. Sedan följer ozon, dikväveoxid och metan.

Koldioxiden avviker på ett extremt sätt från den naturliga växthuseffekten i och med att den har ökat väldigt mycket på grund av människans påverkan. Problemet är att fossila bränslen som i årmiljoner varit gömda i marken nu förbränns och adderas till den naturliga mängden koldioxid i atmosfären.

Man kan tro att någon grad hit eller dit för jordens medeltemperatur inte skulle vara så viktig, men klimateffekterna är dramatiska. Vädersystemet är mycket känsligt och även mindre störningar kan förändra nederbörd, vindar och lokala temperaturer kraftigt.

Några exempel på hur klimatet kan påverkas är

Jorden är en planet med biosfär, dvs. ett tunt skikt på jordens yta där liv existerar. Den biologiska väven av otaliga organismer har genom evolutionen under årmiljarder anpassats till förhållandena på jorden. Om förhållandena ändras alltför snabbt hinner naturen inte anpassa sig och många arter går under. Även mindre förändringar i jordens klimat påverkar livet mycket.

Extrem växthuseffekt på planeten Venus

Uträkningar har gjorts på mängden koldioxid på jorden (inklusive den koldioxid som är bundet i form av karbonater och det som är löst i vatten) och jämförts med mängden koldioxid på Venus. Det har visat sig att mängderna är ungefär lika stora. Skillnaden är att på Venus finns den mesta koldioxiden i atmosfären medan den på jorden är löst i vattnet och bunden i kalksten och växtlighet. Venus atmosfär består till 96,5 % av koldioxid medan jordens atmosfär bara innehåller 0,03 %.

Växthuseffekten på jorden är tydlig, men på Venus är den extrem. Venus yttemperatur är därför mycket hög, ungefär 470 °C. Atmosfärstrycket på Venus är dessutom mycket högt, 95 bar, jämfört med jordens lufttryck på 1 bar.


material på avancerad nivå kommer att läggas in här

Kolsyrade drycker

Tre svenskar uppfann den kolsyrade drycken

Vi har tre svenska kemister att tacka för läskedryckerna: Urban Hjärne, Torbern Bergman och Jöns Jacob Berzelius. Alla tre gjorde upptäckter när det gäller kolsyrans alla användningsområden.

Urban Hjärne var född i Ingermanland år 1641. Ingermanland låg söder om finska viken och var på den tiden en svensk provins. Hjärne var svensk läkare, författare och naturforskare. Han hade bedrivit brunnsstudier i Tyskland och när han kom till Sverige 1656 fick han i uppdrag att leta brunnsvatten. Han fick sig tillsänt vatten från Medevi i Östergötland. Hans analyser av vattnet ledde så småningom fram till att han grundade Medevi brunn. Under 1700- och 1800-talen ansågs mineralvatten och kolsyra ha en läkande effekt. Enligt Hjärne hjälpte brunnsvatten mot det mesta. Bland annat skrev han "Det stärker matlusten, underlättar matsmältningen, häver förstoppningar och har en märklig inverkan på allsköns rubbningar i njurarnas och blåsans verksamhet." Hjärne gjorde också viktiga insatser för att stoppa häxprocesserna i Stockholm under häxhysterin åren 1668–76.

Torbern Bergman var astronom, geograf och fysiker och en av 1700-talets mest framstående svenska vetenskapsmän. På 1700-talet var det populärt bland överklassen att ”dricka brunn” vid Medevi, Ramlösa och Sätra. På vintern 1770 var Uppsala-professorn Bergman sjuk. I hans "cur för bättring" ingick ett 80-tal stop utländskt mineralvatten. Det hjälpte, men var dyrt och han led brist på medel. Detta var anledningen till att han började experimentera med mineralvatten och lyckades konstruera en apparat för att på konstgjord väg framställa dem. Detta lyckades Bergman med 1771 och sedan dess har han kallats den svenska läskedryckens fader. Receptet bakom det på konstgjord väg framställda mineralvattnet var en världssensation. Han hade dels analyserat fram flera av de salter som finns i mineralvatten, dels lyckats framställa kolsyra, eller luftsyra som han kallade det. Detta var Bergman först med i världen, även om han inte var först med att publicera upptäckten.

Jöns Jacob Berzelius har fått epitetet ”Den svenska kemins fader”. Han började sin bana med att praktisera på Vadstena apotek. År 1800 tjänstgjorde han som fattigläkare vid Medevi brunn. Så småningom blev han professor i medicin och farmaci. Han var en vetenskapsman som experimenterade flitigt. Han blandade kolsyrat vatten med olika kryddor, safter och vin. På detta sätt fick han fram olika smaksatta drycker och lade grunden för dagens kolsyrade läskedrycker. Läskedrycken är alltså en svensk uppfinning.

Läskedrycken

Kolioxid i läsken
Läsken är övermättad med kolsyra som sönderdelas till koldioxid och vatten när trycket lättar då läskedrycksflaskan öppnas.
Foto: © Svante Åberg

Vid 20 °C och 1 atm tryck löser sig 1,7 g koldioxid i 1 liter vatten. I vätskor som kolsyras under övertryck kan lösligheten av koldioxid öka 4-5 gånger. Man kan maximalt lösa 8 g koldioxid per liter vatten när man tillverkar läskedrycker. I läskedrycker är vattnet övermättat med koldioxid. Det är möjligt genom att tillföra koldioxiden under högt tryck och försluta flaskan eller burken så att det höga trycket bibehålls. När sedan läsken öppnas, så sjunker trycket till normalt atmosfärstryck. Den övermättade lösningen avger då överskottet av koldioxid som bubblor.

Vid lägre temperatur, så kan vattnet lösa mer koldioxid. Det innebär att en kyld läsk lättare behåller kolsyran.

Den pirrande känslan när man dricker kolsyrad läsk beror inte så mycket på bubblorna, utan på kolsyran som gör läsken sur. Koldioxiden reagerar med vattnet till kolsyra. Kolsyran avger sedan vätejoner på samma sätt som andra syror. Den sura smaken ger en pirrande känsla på tungan. Kolsyran gör läsken mer uppfriskande och framhäver aromen genom att föra med sig aromkomponenterna.

Ofta tillsätts även andra syror. Syrorna balanserar sötman. De vanligaste syrorna i läsk är citronsyra, fosforsyra och äppelsyra. Syran bidrar till en viss skärpa i smaken och hjälper till att släcka törsten. Syrorna sänker pH, vilket ger en viss bakteriehämmande effekt.

 Sockerdricka
Sockerdricka innehåller vatten, kolsyra och socker.
Foto: © Svante Åberg

Socker tillsätts för att förbättra smaken. Många drycker innehåller rätt mycket socker, ofta 7-12 viktsprocent. Det kan vara vanligt socker, sackaros, men artificiella sötningsmedel är också vanliga. De artificiella sötningsmedlen ger få kalorier eftersom de är extremt söta och kan tillsättas i mycket små mängder.

Dessutom tillsätts aromer av olika slag. Färg gör att drycken ser aptitlig ut.

Bakteriehämmande medel och antioxidanter förlänger hållbarheten. De vanligaste konserveringsmedlen är natriumbensoat och kaliumsorbat. Ofta används de tillsammans. Natriumbensoat är saltet av bensoesyran.

Hälsoeffekter

Kolsyrad läsk är egentligen inte särskilt naturlig, utan en kemisk blandning av olika ingredienser som ska maximera smak och upplevelse. Men kolsyrade drycker har i sig inga större negativa hälsoeffekter om man inte dricker övermåttan mycket.

Tandhälsan kan vara ett problem. Kolsyran angriper tandemaljen därför att det blir surt i munnen. Sockret som också brukar finnas i drycken bidrar också till syra som en biprodukt när bakterier i munnen konsumerar sockret. Dessutom är det vanligt med extra tillsatt fosforsyra i dryckerna, som gör drycken extra sur.

Fetma är också ett problem som förvärras av läsk. Mycket socker i läsken bidrar till fettbildning om man är storkonsument. Men det stora problemet är det sug efter energi som uppstår när man känner smaken av sötma. Då hjälper det inte att det vanliga sockret ersatts av artificiella sötningsmedel som är energifattiga. Sötsuget gör att man proppar i sig annat godis eller mat. Portionerna blir större och man äter oftare. Då kan man vara ganska säker att lägga på hullet. Läsk ska alltså drickas i måttliga mängder, inte varje dag.

I länder där dricksvattnet kan vara förorenat av bakterier kan det vara en bra att dricka läsk i stället, eller kanske till och med borsta tänderna i läsk. Men det gäller bara dig som turist som inte är van bakteriefloran. Landets egna invånare har fått motståndskraft mot de flesta bakteriestammarna.


material på avancerad nivå kommer att läggas in här

Gas

Gaser har speciella egenskaper som skiljer dem från vätskor och fasta ämnen. I en gas är avståndet mellan partiklarna mycket större än i en vätska. Avståndet är så stort att det inte finns några intermolekylära krafter som håller ihop partiklarna. De rör sig med stor hastighet, oordnat och fritt från varandra.

Gastryck av molekylernas kollisioner

En molekyl är väldigt liten, men det finns väldigt många! Varje gång en molekyl stöter emot ytan, på en burk t ex, så ger den en liten rekyl som tenderar att stöta bort föremålet. Alla molekylernas stötar ger tillsammans ett tryck som är större än man normalt föreställer sig. Vid normalt lufttryck är kraften 1000 N per dm2. Det motsvarar tyngden av 100 kg på varje kvadratdecimeter eller tyngden av 10 ton på varje kvadratmeter!

Att inte burkar, människor, fotbollar med mera trycks ihop av de väldiga krafterna beror på att det finns ett mottryck inifrån som är lika stort.

I figuren nedan ser man att det är fler molekyler som kolliderar med väggen på vänster sida än på höger. Gastrycket är alltså högre på vänster sida om väggen.

Gastrycket orsakas av molekylernas många små stötar. Gastrycket till vänster om väggen är högre därför att det är fler kollisioner.
Bild: © Svante Åberg

Kollisionerna på ömse sidor om väggen är ungefär lika kraftiga, vilket betyder att partiklarna rör sig ungefär lika fort. Man kan alltså dra slutsatsen att temperaturen är densamma på båda sidor om väggen.

Temperatur, kärlets volym och substansmängden påverkar trycket

Partiklarna kolliderar med varandra och med det omgivande kärlet. Det utgör gasens tryck. Trycket hos en gas beror på flera saker:

Alltså, trycket är proportionellt mot absolut temperatur och substansmängd och omvänt proportionellt mot volymen. Detta kan sammanfattas i Allmänna gaslagen.

Allmänna gaslagen:
pV = nRT
p = tryck, Pa
V = volym, m3
n = substansmängd, mol
T = temperatur, Kelvin
R = proportionalitetskonstant = 8,3145 J K-1 mol-1

Molvolym

Gasmolekylernas sammanlagda volym är väldigt liten i förhållande till gasens totala volym. Detta gör att en viss substansmängd av i stort sett alla gaser har samma volym vid samma tryck och temperatur. Gaserna har samma molvolym, och vid standardtryck och standardtemperatur (STP: p = 1 atm = 101,325 kPa = 1,01325 bar, T = 25 °C = 298,15 K) är molvolymen 24,47 dm3/mol.


Gasens densitet

Enklast är att räkna på en mol av gasen. Till exempel väger en mol koldioxid (CO2) 12,0 g + 2·16.0 g = 44,0 g. Vid standardtemperatur och tryck (se ovan) är molvolymen 24,47 dm3. Då är densiteten 44,0 g/24,47 dm3 = 1.80 g/dm3.

Luft består till ungefär 20% av syrgas (O2) och 80% kvävgas (N2). En mol syrgas väger 2·16.0 g = 32.0 g. En mol kvävgas väger 2·14.0 g = 28.0 g. En mol luft innehåller 0,20 mol syre och 0,80 mol kväve. En mol luft väger då 0,20·32,0 g + 0,80·28,0 g = 28,8 g. Vikten genom molvolymen blir då 28,8 g/24,47 dm3 = 1.18 g/dm3.

Dessa två beräkningar visar att koldioxid är tyngre än luft. Därför sjunker koldioxid till marken när den släpps ut i luften.

En motsvarande beräkning av densiteten för vattenånga (H2O) ger densiteten 18,0 g/24,47 dm3 = 0,73 g/dm3. Man kan alltså se att vattenångan är mycket lättare än luften. Därför stiger vattenånga som avdunstar från marken och vattendragen uppåt i osynliga bubblor av ånga. När vattenångan kommit tillräckligt högt är temperaturen så låg att den kondenserar till vattendroppar och blir synlig i form av moln.

Gaspartiklarnas rörelseenergi

Gaspartiklarna rör sig slumpmässigt, men i genomsnitt har de en rörelseenergi som motsvarar temperaturen. Ju högre temperaturen är, desto snabbare rör sig partiklarna. Temperaturen är därför ett mått på gaspartiklarnas rörelseenergi.

När man har en blandning av gaspartiklar som väger olika mycket, så får olika tunga partiklar ändå samma genomsnittliga rörelseenergi. Det innebär att tunga gaspartiklar rör sig långsammare än lätta gaspartiklar, annars skulle inte rörelseenergierna vara lika.

Till exempel rör sig vätemolekyler (H2) med molekylmassan 2 u 3.74 gånger snabbare än kvävemolekyler (N2) med molekylmassan 28 u. Man skulle kunna tro att vätet skulle röra sig 14 gånger snabbare eftersom kvävet är 14 gånger tyngre, men rörelseenergin är proportionell mot kvadraten på hastigheten. Därför blir kvoten mellan hastigheterna √ 28/2 = √ 14 = 3.74.

Gaslagar

Volymen och/eller trycket hos en gas varierar med temperaturen. Det beror på att med ändrad temperatur ändras gasmolekylernas rörelsehastighet. Om temperaturen sänks avtar hastigheten, krockarna mellan molekyler och molekyler och väggar blir mildare och rekylerna mindre. Om väggen kan krympa (t.ex. i en ballong) minskar volymen.


Gastrycket hos den inneslutna luften i ballongen balanseras precis av lufttrycket utanför ballongen plus ballongens elastiska sammandragning. Ifall luften är innestängd i en plastpåse som bara är delvis fylld, så bidrar inte påsen med något eget tryck, utan det är enbart det yttre lufttrycket som balanseras.
Bild: © Svante Åberg

Volymen och/eller trycket beror också på substansmängden gas, dvs. hur många mol gas vi har. En större mängd kräver antingen större volym eller ger högre tryck.

För att uttrycka sambanden mellan olika tryck, volym, temperatur och substansmängd hos gaser används följande beteckningar och enheter:

p = tryck (N/m2)
V = volym (m3)
T = absolut temperatur (K)
n = substansmängd (mol)
R = proportionalitetskonstant i allmänna gaslagen med värdet 8,314 J K-1 mol-1
k1, k2 osv. = proportionalitetskonstanter i gaslagarna med olika enheter

Allmänna gaslagen (gasernas allmänna tillståndsekvation) sammanfattar sambanden mellan substansmängd, temperatur, tryck och volym till en formel:

p·V = n·R·T (R = 8,314 J K-1 mol-1)


Evangelisto Torricello

Gaslagarna började undersökas 1643. Det började med barometern och en man som hette Evangelisto Torricello (1608-1647). Torricello använde kvicksilver för att tillverka den första barometern 1643.

Torricello fick ingen gaslag uppkallad efter sig. Däremot blev han ärad genom enheten Torr för tryck. En Torr motsvarar en mm av kvicksilverpelaren i hans barometer.

Boyles gaslag - trycket gånger volymen är konstant

Detta ledde till att Robert Boyle (1627-1691) kunde upptäcka sambandet mellan tryck och volym. År 1622 publicerade Boyle det som idag är känt som Boyles lag, dvs. att volymen av en gas är omvänt proportionell mot trycket. Det kan också uttryckas som att produkten av trycket och volymen är konstant.

Sambandet mellan tryck och volym visas i Boyles lag:

p·V = k1 (vid konstant T och n)

Charles gaslag - volymen är proportionell mot absoluta temperaturen

I slutet av 1700-talet tog Jacques Charles (1746-1823) nästa steg på vägen mot gasernas allmänna lag. Charles gjorde vetenskapliga undersökningar om sambandet mellan trycket och temperaturen hos gaser i slutna behållare med konstant volym och kom fram till Charles lag, men han publicerade aldrig sitt arbete och det var inte förrän 1808 som resultaten publicerades. Han visade att volymen är proportionell mot absoluta temperaturen under förutsättning att trycket hålls konstant.

Sambandet mellan volym och temperatur visas i Charles lag:

V = k2·T (vid konstant p och n)


När man prickar in de experimentellt erhållna värdena för volym och temperatur kan man extrapolera den räta linjen till absoluta nollpunkten.
Bild: © Svante Åberg

Gay-Lussacs gaslag - trycket är proportionellt mot absoluta temperaturen

Resultaten publicerades då av Joseph Gay-Lussac (1778-1850) som hade gjort de slutliga mätningarna. Gay-Lussac fortsatte att undersöka sambandet mellan volymen och temperaturen hos inneslutna gaser vid konstant tryck och idag finns Gay-Lussacs lag uppkallad efter honom.

Sambandet mellan tryck och temperatur visas i Gay-Lussacs lag:

p = k3·T (vid konstant V och n)

Dalton gaslag - det totala gastrycket är summan av partialtrycken för de enskilda gaserna i en blandning

Daltons lag presenterades 1801 av John Dalton (1766-1844): det totala trycket av en blandning av är lika med summan av det partiala trycket av varje enskild gas. Partialtrycket är trycket som varje gas skulle utöva om det ensam befann sig i samma volym som de blandade gaserna med samma temperatur.

Sambandet mellan partialtrycken och det totala trycket visas i Daltons lag:

p = p1 + p2 + p3 + ... (vid konstant T och V)

Avogadros gaslag - volymen är proportionell mot substansmängden

År 1811 publicerade Amadeo Avogadro (1776-1856) en artikel som presenterade att alla gaser vid samma temperatur och tryck, lika volymer av olika gaser innehöll samma antal molekyler. Denna idé ignorerades i nästan 50 år och det var inte förrän Stanisalo Cannizaro 1860 presenterade Avogrados arbete som man erkände det. Idag kallas en mol för Avogadros konstant. Genom denna upptäckt börjar vår moderna syn på gaser.

Sambandet mellan volym och substansmängd visas i Avogadros lag:

V = k4·n (vid konstant T och p)

Allmänna gaslagen

Alla dessa samband kan sammanföras i den allmänna gaslagen eller gasernas allmänna tillståndsekvation:

p·V = n·R·T (R = 8,314 J K-1 mol-1)
Ideala gaser

Den allmänna gaslagen har vissa begränsningar. Den förutsätter att gasmolekylerna inte påverkar varandra. Vid höga tryck eller temperatur nära kondensationspunkten får de så låg energi eller kommer så nära varandra att detta inte gäller. Man har infört begreppet ideala gaser för de tänkta gaser som inte har några intermolekylära krafter. I den ideala gasen antas också att själva gasmolekylerna saknar volym.

Mer om vetenskapsmännen bakom lagarna

Det verkar ha rått delade meningar under olika tider och i olika länder om vilken vetenskapsman som ska namnge vilken lag. En presentation av männen ger en inblick i naturvetenskapens utvecklingshistoria under tre sekler.

Robert Boyle

Boyle var son till en brittisk earl och levde 1627-1691. Han studerade både i hemlandet och i Genève och Florens. Boyle ägnade mycket tid åt experiment, något som inte var så vanligt på den tiden. Studier av fysikaliska och kemiska fenomen i lufttomt rum studerades, bl.a. Boyles tankar runt hur små enheter av materia förenas i bestämda grupperingar var början till molekylbegreppet.

Jacques Charles

Charles var fransman och levde 1746-1833. Han blev professor i fysik och var pionjär på ballongflygningens område.1783 gjorde han den första uppstigningen med sin egenhändigt konstruerade vätgasballong. Han ägnade bl.a. sin forskning åt att studera hur gasers volym påverkas av temperaturen.

Joseph-Louis Gay-Lussac

Gay-Lussac var också fransman och professor i fysik. Han levde 1778-1850. Gay-Lussac gjorde ballonguppstigningar och tog luftprover från olika höjder. Han upptäckte att väte och syre förenades till vatten i volymförhållandet 2 till 1 och fortsatte att studera gasreaktioner. Vidare förbättrade han framställningstekniken för natrium, kalium och svavelsyra och upptäckte grundämnet bor.

John Dalton

Dalton som levde 1766-1844 är känd som den moderna atomteorins grundare. Den formulerades i början av 1800-talet och stod sig i nästan 100 år. Dalton observerade viktförhållandet mellan olika ämnens minsta partiklar och detta ledde honom till atomteorin. Han antog att grundämnen bestod av med en för ämnet karaktäristisk massa. Dalton skrev meteorologisk dagbok i 57 år och gjorde undersökningar på partiell färgblidhet.

Amadeo Avogadro

Italienaren Avogadro, som levde 1767-1856, var först jurist och ämbetsman. Han blev, efter att ha bytt bana, professor i naturfilosofi och fysik. Inspirerad av Gay-Lussacs studier av gasers volymförhållanden vid kemiska reaktioner formulerade han tesen att alla gaser vid samma tryck och temperatur innehåller samma antal molekyler. Detta accepterades på 1860-talet.

Avogadro har fått ge namn åt Avogadros konstant, antalet molekyler eller partiklar i substansmängden en mol.