När 1 plus 1 inte är 2

Tillhör kategori: fysikalisk kemi, kemisk bindning, kemisk struktur

Författare: Svante Åberg

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Brandfarligt 

Tid för förberedelse: 10 minuter

Tid för genomförande: 10 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Kräver viss labvana

Introduktion

När du mäter volymer så kanske du väntar dig att de ska vara "additiva", dvs att du kan räkna ut totalvolymen som summan av delvolymerna. Om du sätter en dl mjölk till en dl mjölk så blir det faktiskt 2 dl. Men det här stämmer inte alltid - inte om du blandar olika vätskor.

Riktlinjer

Experimentet kräver att man kan mäta volymer med god precision. Det passar om elevförsök med lite äldre elever och som demonstration i tidiga årskurser.

Säkerhet

Se till att det inte finns någon öppen eld i närheten av acetonen eller etanolen.

Mindre mängder av överbliven aceton eller etanol kan spolas ned i avloppet. Spola extra vatten efteråt.

Materiel


Förarbete

Inget förarbete.

Utförande

  1. Mät upp noga 10,00 ml vatten i 10 ml mätcylindern.
  2. För över vattnet till 25 ml mätcylindern.
  3. Mät upp noga 10,00 ml aceton i 10 ml mätcylindern. Att hälla försiktigt
  4. För försiktigt även acetonen till 25 ml mätcylindern genom att låt den rinna efter insidan på mätcylindern. Man kan använda en glasstav, som figuren visar, för att styra strålen.
  5. Avläs volymen.
  6. Håll för mätcylinderns öppning med handen och vänd cylindern några gånger så att vattnet och acetonen blandas.
  7. Avläs volymen igen. Vad har hänt?

Variation

I mätkolvar

Effekten av volymminskningen blir mycket tydligare om man använder mätkolvar. Då passar experimentet även som demonstration.
  1. Fyll en 25 ml mätkolv till märket med vatten.
  2. Fyll en annan 25 ml mätkolv till märket med aceton.
  3. För över vattnet till en 50 ml mätkolv.
  4. För sedan försiktigt över acetonen i samma mätkolv och sätt på proppen.
  5. Observera vätskenivån.
  6. Vänd mätkolven uppochned några gånger och observera vätskenivån på nytt.

Annan vätska

Man kan använda etanol eller T-sprit (95 % etanol) i stället för aceton.

Kvalitativt experiment i provrör

  1. Fyll ett litet provrör till hälften med vatten.
  2. Fyll sedan försiktigt provröret bräddfullt med aceton (eller etanol).
  3. Täpp till öppningen med ett finger och skaka om så att vätskorna blandas.
  4. Känn hur fingret sugs fast av det vacuum som bildas när volymen minskar.

Experimentet finns också beskrivet i referens [1].

Förklaring

I vattnet finns lite utrymme mellan molekylerna. Det beror till stor del på att vattenmolekylerna binder varandra på ett sätt som gör att de inte är tätpackade. Acetonmolekylerna kan lägga sig mellan vattenmolekylerna så att volymen utnyttjas bättre. Därför tar blandningen av aceton och vatten mindre plats vätskorna var för sig.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Vattnets 3D-struktur

Klicka i figuren nedan för att starta ChemScape Chime (plug-in till Netscape som kan hämtas gratis på Internet) eller ladda ner strukturen. När du tittar på molekylen i 3D kan du klicka med höger musknapp, välja "Display" - "Spacefill" - "Van der Vaals radii". Vrid på strukturen och se hur det finns hålrum mellan vattenmolekylerna. Lägg också märke till hur vätet (vit) i en vattenmolekyl binder till syret (röd) i en annan. Denna typ av bindning kallas vätebindning.

Vatten i frusen form, dvs is, har en regelbunden struktur, med ännu mera hålrum (se strukturen hos is). Anledningen till den luckra strukturen är vätebindningen mellan syret och vätet hos vattenmolekyler som ligger nära varandra. De orienteras sig därför inte på det mest tätpackade sättet utan bildar den luckra kristallstrukturen.

Volymen kan både öka och minska vid blandning

En ideal lösning har egenskapen att blandningens volym är lika med summan av de ingående vätskornas volymer före blandningen. Verkliga lösningar avviker mer eller mindre från denna regel.

När 50 ml etanol och 50 ml vatten blandas minskar den totala volymen till 96,47 ml i stället för förväntade 100 ml.

Motsatta fallet får man när man blandar koldisulfid och etylacetat (måste utföras i dragskåp; farligt att inandas!). 50 ml koldisulfid blandad med 50 ml etylacetat ger volymen 101,4 ml. Anledningen till att volymen ökar i detta fall är att attraktionskrafterna mellan koldisulfid- och etylacetatmolekylerna inte är lika starka som mellan två koldisulfidmolekyler eller mellan två etylacetatmolekyler. [2]

Om vätskor som liknar varandra blandas så blir volymminskningen, eller ökningen, väldigt liten. Om man till exempel blandar 50 ml metanol med 50 ml etanol så blir volymen 100 ml.

Experimentera med olika proportioner

I experimentet med vatten och aceton visar det sig att man får den största volymminskningen om man tar vatten och aceton i molförhållande 3:1, molbråket naceton/(naceton + nvatten) = 0,25. [1]

Man kan använda T-sprit i stället för ren etanol

T-sprit är 95 %-ig etanol i vatten plus små mängder denatureringsmedel. Denatureringsmedlen är metyletylketon, etylacetat, bitrex. Dessutom ingår färgämnen. Anledningen till procenttalet 95 % är att etanol bildar en azeotrop med vatten när den destilleras. När 95 %-ig etanol destilleras förångas etanolen och vattnet i samma proportioner som de förekommer i lösningen. Därför sker ingen ytterligare separation av vätskorna.

När 50 ml T-sprit blandas med 50 ml vatten blir volymen 96,8 ml. [2]

Aceton är ett bra lösningsmedel

Aceton Nagellacksborttagare innehåller mest aceton. Aceton är ett lösningsmedel som är både polärt och opolärt. Det kan därför lösa oljiga, feta föreningar, men är samtidigt löslig i vatten.

Fördjupning

Etanol

Framställning

Etanol Etanolen (etylalkohol, förenklat skrivsätt EtOH) har uråldriga anor som berusningsmedel och den framställdes genom jäsning av kolhydrater från växtriket. Den kemiska reaktionen som sker är:

C6H12O6 C2H5OH + CO2
socker   etanol   koldioxid

Dessutom behövs en katalysator i form av jäst. Det är ett enzym hos jästsvampen som omvandlar kolhydraterna till etanol. Jästsvampen kan bara överleva i en alkoholhalt på ca 13 %, därefter dör den och jäsprocessen upphör. För att få högre alkoholhalt krävs att man destillerar alkoholen.

Detta var innan den petrokemiska industrin fanns. Idag framställs etanol för industriellt bruk genom hydrering av eten (kallas ibland etylen). Den kemiska reaktionen äger rum med hjälp av en katalysator och är:

H2C=CH2 + H2O C2H5OH
eten   vatten   etanol

Egenskaper

Kokpunkten för etanol är 78 C och fryspunkten -114 C. Den låga fryspunkten gör etanolen lämplig att använda i termometrar. För bättre synlighet färgas den vanligen röd eller blå. Förr användes kvicksilvertermometrar, men de förbjöds av av miljöskäl.

Etanol är lättantändlig och brinner med en blå låga om syretillförseln är god. Flampunkten för ren etanol är 16,6 C. Det innebär att vid temperaturer över 16,6 C bildas det tillräckligt med etanolångor ovanför vätskan för att de ska vara antändbara, förutsatt att ångorna inte ventileras bort. Under denna temperatur kan ångorna inte antändas eftersom koncentrationen av etanolångor är för låg.

I vatten-etanolblandningar är volymen mindre än samma mängd vatten och etanol separat. Det beror på att vatten har ett inslag av struktur även i flytande form som beror på vattenmolekylens vinkel och hur vattenmolekylerna binder till varandra med vätebindningar. Strukturen är då hexagonal, på motsvarande sätt som i snökristaller. Denna struktur är lucker. När etanol blandas med vatten fyller etanolmolekylerna delvis ut det tomrum som finns i vattnet och därför är blandningen mer kompakt än vattnet är enskilt.

Etanol som lösningsmedel

Etanol är vattenlöslig i alla blandningsförhållanden. Den vattenlösliga delen är OH-gruppen som bildar vätebindning till vatten. Den icke vattenlösliga kolvätekedjan med två kolatomer är för kort för att påverka lösligheten i vatten.

Som lösningsmedel kan man dock se skillnad på etanol och metanol. Den något längre kolvätekedjan i etanol med 2 kolatomer i jämförelse med metanolens enda kolatom gör etanolen till ett sämre lösningsmedel för salter. Å andra sidan är etanol bättre lösningsmedel än metanol för feta ämnen, vilket man märker vid fläckborttagning.

Etanol används som lösningsmedel i många sammanhang. Ett exempel är munskölj. Den finns i vattenbaserade färger, rengöringsmedel, i läkemedel, lacker och bläck.

Berusningsmedel

Etanolen, eller "alkoholen", har använts som berusningsmedel sedan mycket länge tillbaka. Etanol bildas naturligt i jäsningsprocesser, t.ex. då frukt blir gammal. Man kunde därför oavsiktligt bli berusad av fermenterad mat. Det är välkänt att alkoholen försämrar omdömet och reaktionsförmågan, men den kan även vara avslappnande.

Benämningen "alkohol" är egentligen ett begrepp som täcker in alla kolväten som har en eller flera OH-grupper. Exempelvis är också träsprit (metanol) en alkohol. Men i dagligt tal brukar man mena etanol när man talar om alkohol.

Medicinska effekter

I kroppen oxideras etanolen till acetaldehyd. Det är ett skadligt ämne som orsakar illamående, så kallad "bakfylla". Acetaldehyden oxideras sedan vidare till etansyra (dvs. ättiksyra) med hjälp av ett enzym.

Etanolen är beroendeframkallande. Långvarigt bruk leder till många allvarliga medicinska tillstånd. Bland de mer kända är skrumplever som innebär att levervävnaden bryts ned och omvandlas till bindväv. Allt större delar av levern dör, blir hård och skrumpnar sedan. En annan känd effekt av långvarigt bruk är hallucinationer och psykiska problem såsom delirium tremens. Ytterligare medicinska problem som förekommer är bland annat högt blodtryck, depression, impotens och strupcancer.

Etanol som fordonsbränsle

Etanolen har samma brandklass som bensinen. En nackdel är att etanol inte förångas lika lätt som bensin i låga temperaturer, och det gör den svår att använda på breddgrader med mycket kallt klimat. Etanol används dock som fordonsbränsle med benämningen E85. Den innehåller 85 % etanol och 15 % bensin sommartid. Vintertid då etanolens begränsade flyktighet kan vara ett problem är proportionerna 75 % etanol och 25 % bensin.

Eftersom etanolen har ett lägre energiinnehåll vid förbränning än bensin är också etanolbilarna törstigare. En fördel med etanol är dock att den kan framställas ur biomassa. Om det kan ske utan att produktionen i övrigt förbrukar stora mängder fossila bränslen, t.ex. för traktorer och transporter inom jordbruket, så kan nettoutsläppet av koldioxid minskas genom att använda etanol som bränsle. De stora koldioxidutsläppen är ju ett allvarligt problem som orsakar global uppvärmning med ekonomiska påfrestningar och social oro när människors levebröd försvinner.

Etanol som industriråvara

Etanol används främst vid framställning av etanal och som lösningsmedel.

Den tekniskt framställda etanolen görs odrickbar genom denaturering. Rödsprit, ofta kallad T-röd, består vanligtvis till 95% av etanol och 5% av denatureringsmedel, som gör alkoholen odrickbar. Exempel på denatureringsmedel är isopropanol, etylacetat, metyletylketon, metylisobutyl-keton, dietylftalat, butylacetat, butanol, Bitrex®, toluen. Dessutom ingår färgämnen.

Destillation

När en blandning av etanol och vatten förångas är etanolen betydlig mer lättflyktig än vattnet. Det medför att halten etanol är mycket högre i ångorna som bildas än i etanollösningen. Detta är principen för uppkoncentrering med hjälp av destillation. Ångorna måste sedan kylas för att man ska få tillbaka dem i vätskeform, men då med högre etanolhalt. Det är dock förbjudet enligt lag att destillera etanol privat.

Destillationen av alkoholen kan utföras i flera omgångar eller med avancerad destillationsapparatur för att maximera etanolhalten. Det är dock i princip omöjligt att uppnå en högre etanolhalt än 96 %. Etanol-vattenblandningen har en azeotrop vid 96 % etanol. Om man skulle försöka destillera en etanollösning med högre halt än 96 % skulle den i stället bli mindre koncentrerad eftersom ångorna som avges är rikare på vatten än etanol ovanför punkten för azeotropen.

mer material på avancerad nivå kommer

Vatten

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.

Vattnets ovanliga egenskaper

Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.

Vattnet är tyngst vid +4 °C.
Bild: © Svante Åberg

Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.

Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.

Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).

Vattnet är livsnödvändigt

Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.

När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.

Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.

Vattnet blev referens för temperaturskalan

Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.

När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K

Vätebindningar karaktäriserar vattenmolekylen

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.

Vätebindningarna ger hög ytspänning

Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.

Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.

Vinklad molekyl ger hexagonal struktur

I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats.
Bild: © Svante Åberg

Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.

Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.

Vattnets syra-basegenskaper

Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.

Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.

Vätebindning

Vätebindningar finns i vatten och i många organiska ämnen i kroppen. Vätebindningar ger ämnena polära egenskaper, såsom löslighet i vatten. Vätebindningarna är också viktiga för strukturen hos till exempel DNA.

I strukturformler brukar vätebindningen markeras med streckad linje.

Bindningskrafter inom och mellan molekyler

Kemiska ämnen hålls samman av starka bindningar såsom kovalenta bindningar i molekylföreningar och jonbindningar i salter. Bindningar inom föreningen är intramolekylära krafter.

Men de finns också bindningar mellan föreningarna, intermolekylära krafter.

intramolekylär = inom molekylen
intermolekylär = mellan molekyler

Intermolekylära krafter är svagare än de intramolekylära.

Vätebindning kan ske när vätet sitter på N, O eller F

Den så kallade vätebindningen hör dock till de starkare intermolekylära krafterna. Den kan beskrivas som en extra stark dipol-dipolbindning.

Vätebindning kan uppstå mellan ett väte som sitter på atomslaget N, O eller F i en molekyl och atomslaget N, O eller F i en annan molekyl.

Här är några exempel på kemiska föreningar som kan bilda vätebindningar:

Vatten: H2O kan vätebinda. Däremot kan inte analogen vätesulfid H2S vätebinda eftersom svavel inte är tillräckligt elektronegativ.
Vätefluorid: HF kan vätebinda. Däremot kan inte analogen vätebromid HBr vätebinda eftersom brom inte är tillräckligt elektronegativ.
Ammoniak: NH3 kan vätebinda.
Karboxylsyror: exempelvis ättiksyra, CH3COOH kan vätebinda.
Alkoholer: exempelvis etanol, CH3CH2OH kan vätebinda. Däremot kan inte analogen etantiol CH3CH2SH vätebinda eftersom svavel inte är tillräckligt elektronegativ. Isomeren CH3-O-CH3 till etanol har samma summaformel, men föreningen är en eter och sådana har inget väte som sitter direkt på syreatomen. Därför kan etrar inte vätebinda.
Aminer: exempelvis ettylamin, CH3CH2NH2 kan vätebinda. Undantag är tertiära aminer som trimetylamin N(CH3)3 eftersom det inte sitter någon väteatom direkt på kvävet. Inte heller kan analogen etanitiol CH3CH2SH inte vätebinda eftersom svavel inte är tillräckligt elektronegativ.

Vätebindning kan även ske till kloridjoner

Kloratomen är inte tillräckligt elektronegativ för att skapa ett elektronmoln med så hög täthet att vätebindningar kan skapas. En enskild kloratom kan däremot få tillräckligt tätt elektronmoln genom att ta upp en extra elektron så att en kloridjon skapas.

En lite udda variant av vätebindningar kan därför fås mellan den negativt laddade kloridjonen och vattenmolekyler i lösningen, exempelvis en koksaltlösning.

Bilden till höger är en ögonblicksbild av en simulering. Vätebindningarna är markerade med röda streck. Väteatomer är vita, syreatomer röda och kloridjonen är rosa.

Man kan se vätebindningar mellan vätet i vatten och kloridjonen, liksom vätebindning mellan vätet i en vattenmolekyl och syret i en annan vattenmolekyl.

N, O och F är starkt elektronegativa atomslag


Elektronmolnet kring en vattenmolekyl är starkt förskjutet från väteatomerna mot syreatomen.
"Water charge distribution" av Martin Chaplin

Atomslagen N, O och F är de mest elektronegativa atomslagen i hela periodiska systemet. Elektronegativa atomer har förmågan att dra till sig elektroner.

I vatten sitter vätet på en syreatom. Vätet har en kärna med laddningen +1 och en elektron med laddningen –1. En fri väteatom har därför nettoladdningen 0. Syret drar till sig elektronmolnet mycket effektivt, vilket leder till att det blir ett positivt laddningsöverskott δ+ på väteatomen. Vatten har två väteatomer, som sitter på syret. Även den andra väteatomen får ett positivt laddningsöverskott δ+. På motsvarande sätt får syreatomen ett dubbelt negativt laddningsöverskott 2δ–.

Det positiva vätet i en vattenmolekyl kan binda till det negativa syret i en annan vattenmolekyl med så kallad vätebindning. Bindningen är ovanligt stark för att vara en intermolekylär bindning. Det beror på att vätet är nästan ”naket” när elektronmolnet dragit sig undan så effektivt från vätet. Därmed kan vätet komma mycket nära syreatomen i den angränsande vattenmolekylen, vilket gör att den elektrostatiska attraktionen blir extra stark.

Vätebindningarna ger vattnet dess egenskaper

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vatten är det viktigaste lösningsmedlet, inte bara inom kemin, men också för livet på jorden. Vattnet har nämligen speciella egenskaper som beror på vätebindningarna mellan molekylerna.

På grund av polariteten hos vätebindningarna är vatten ett utmärkt lösningsmedel för polära ämnen såsom salter och organiska ämnen med polära grupper. Den vinklade formen hos vattenmolekylen ger en hexagonal struktur hos iskristallerna när vattnet fryser, vilket återspeglas i snöflingornas sexkantiga form. Iskristallerna hålls samman av vätebindningar. Vätebindningarnas styrka gör också att vattnets kokpunkt är mycket högre än den annars skulle vara.


Vätebindningarna ger struktur åt DNA

Vårt genetiska arv är kodat i DNA. Där finns basparen AT (Adenin och Tymin) och GC (Guanin och Cytosin). Det är viktigt att A verkligen parar med T och att G verkligen parar med C, annars skulle det bli oordning i den genetiska koden.


Basparning av Adenin och Tymin.

Basparning av Guanin och Cytosin.
"Base pair Adenine Tyhmine" av Yikrazuul" Public Domain Mark "Base pair Guanine Cytosine" av Yikrazuul" Public Domain Mark

Parningen blir rätt tack vare att A och T parar med två vätebindningar, men G och C parar med tre vätebindningar.

Litteratur

  1. Lee R. Summerlin, Christie L. Borgford, Julie B. Ealy, A Sourcebook for Teachers, Vol. 2, Second edition, p. 14, 1988, American Chemical Society, Washington, DC.
  2. Bassam Shakhashiri, Chemical Demonstrations, Vol. 3 pp 225-228, 1989, University of Wisconsin Press, Madison, WI.
  3. Bertil H. Schulze (red.) m.fl., Spritboken - boken om teknisk sprit, 1988, Kemetyl AB, Stockholm.
  4. Volume Percent, Clackamas Community College
    http://dl.clackamas.cc.or.us/ch105-04/volume.htm (2003-06-10)
  5. Experiment 1: Is Volume Conserved?, Boston College
    http://chemserv.bc.edu/ugrad/lab/gen/Volume.pdf (2003-06-10)
  6. Volume Nonadditivity of Liquid Mixtures: Modifications to Classical Demonstrations, Vladimir M. Petruševski & Metodija Z. Najdoski, The Chemical Educator, Vol. 6, No. 3, Springer-Verlag New York, Inc
    http://194.94.42.12/licensed_materials/00897/papers/0006003/630161vp.htm (2004-02-23)

Fler experiment


fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

kemisk bindning
Att vara kemisk detektiv
Bestäm CMC för diskmedel
Blandningar av lösningsmedel
Diska med äggula
Ett målande experiment - att rengöra en målarpensel
Frigolit i aceton
Färga ullgarn med svampar
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör hårt vatten mjukt
Gör kopparslanten skinande ren - med komplexkemi
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Håller bubblan?
Kemisk vattenrening
Kristallvatten i kopparsulfat
Lödtenn 60
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
Permanenta håret
Slime
Studsboll
Såpbubblor
Tag bort rostfläcken med det ämne som gör rabarber sura
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Tillverka papperslim
Trolleri med vätskor
Tvätta i hårt vatten
Undersök en- och flervärda alkoholer
Varför färgas textiler olika?
Vattenrening
Visa ytspänning med kanel

kemisk struktur
DNA ur kiwi
Doft och stereoisomeri
Frigolit i aceton
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Hur kan man göra kläder av plast?
Kristallodling
Kristallvatten i kopparsulfat
Matoljans viskositet och omättade fettsyror
Platta yoghurtburkar
Smältpunkten för legeringen lödtenn
Studsboll