Gore-Tex, materialet som andas

Tillhör kategori: aggregationsformer, fysikalisk kemi, kemisk bindning, kemisk struktur, vardagens kemi

Författare: Pär Lundquist

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Brandfarligt Irriterande 

Tid för förberedelse: 10 minuter

Tid för genomförande: 30 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Utföres med normal varsamhet

Svårighetsgrad: Busenkelt

Introduktion

Vem har inte mött återförsäljare som beskrivit de nästan magiska egenskaperna hos just deras jacka eller skalbyxa vad gäller dess förmåga att hålla dig varm och torr i alla väder. Hemligheten ska ligga i ett tunt oansenligt membran någonstans mellan yttertyg och foder och heter Gore-Tex. Vi ska undersöka hur Gore-Tex egentligen fungerar.

Riktlinjer

Aktiviteten lämpar sig bäst som elevförsök. Delförsöken kan utföras oberoende av varandra.

Säkerhet

Tänk på brandrisken framför allt när du använder bensin, men även K-sprit. Låt inte ångorna komma i kontakt med öppen eld.

Kvittblivningen är enkel: Vattnet kan hällas ut i vasken och Gore-Tex slängas i papperskorgen. Den små mängder bensin och K-sprit som används låter man avdunsta på en väl ventilerad plats.

Materiel

Förarbete

Se till att det finns tillgång till kallt och varmt vatten (cirka 15 °C respektive 40 °C).

Utförande

Det sägs att plagg med Gore-Tex "är fullständigt vind- och vattentäta samt att de har en överlägsen förmåga att andas, dvs överskottsvärme och fukt kan passera ut".
Försök 1 visar materialets vätningsegenskaper och genomsläpplighet för vätskor.
Försöken 2-4 åskådliggör drivkraften som får vattenångan att vandra genom membranet.

Försök 1: Vätning och genomsläpplighet för vätskor:

  1. Undersök Gore-Texmembranet och vad som händer om man lägger en vattendroppe på det. Jämför vattendroppens utseende med andra vätskor som placeras på membranet. (T-sprit, K-sprit, Diskmedel + vatten, sköljmedel till diskmaskin, etc.)
  2. Undersök hur högt tryck membranet tål i jämförelse med andra material (t.ex., bävernylon, jeans) genom att fästa en tygbit över ena öppningen på en vattenslang, fylla den med vatten och höja slangen tills vattnet bryter igenom. Om nu Gore-Texmembranet skulle tåla en pelare på 45 m måste vi ta till lite andra metoder, såvida inte er skola byggts på höjden. Ta reda på, varför inte genom egna mätningar, trycket i en vanlig vattenkran. Man kan givetvis kombinera dessa metoder genom att koppla slangen till vattenkranen och sen leda den ner i ett trapphus ed.

Försök 2: Genomsläpplighet för vattenånga.

  1. Sätt plasthandsken på den ena handen och Gore-Texhandsken på den andra.
  2. Använd gummisnodden för att försegla handskarna vid handleden så att fukten inte kryper ut den vägen.
  3. Blås in lite luft i varje handske så att den inte ligger an direkt mot huden.
  4. Låt handskarna sitta på i ca 10 min. Ju längre tid desto tydligare resultat.
  5. Ta av handskarna och se om det är någon skillnad i fuktighet mellan de båda händerna.

Försök 3: Nedsänkt i vatten.

  1. Sätt plasthandsken på den ena handen och Gore-Texhandsken på den andra med de isolerande bomulls- eller yllevantarna under.
  2. Använd gummisnodden för att försegla handskarna vid handleden.
  3. Stoppa ned båda händerna i bunken som fyllts vatten som har en temperatur på ca 15 °C.
  4. Håll dem där i ca 15 min.
  5. Ta av handskarna och se om det är någon skillnad i fuktighet mellan de båda händerna.

I försök 3 kan man experimentera med att fukta händerna innan man tar på sig handskarna för att därigenom få ett tydligare resultat.

Försök 4: Temperaturens inverkan.

  1. Sätt plasthandsken på den ena handen och Gore-Texhandsken på den andra med de isolerande vantarna under.
  2. Använd gummisnodden för att försegla handskarna vid handleden.
  3. Stoppa ned båda händerna i bunken som fyllts vatten som har en temperatur på ca 40 °C.
  4. Håll dem där i ca 15 min.
  5. Ta av handskarna och se om det är någon skillnad i fuktighet mellan de båda händerna.

Förklaring

Gore-Tex är ett membran av Teflon (polytetrafluoroetylen). Teflon är mycket hydrofobt, dvs vattenavstötande, men "älskar" å andra sidan feta ämnen såsom bensin. Vattendropparna är runda till formen och för stora för att tränga igenom de små porerna i membranet. Vattendropparnas form bibehålls tack vare den starka ytspänningen hos vattnet.

Bensin däremot flyter lätt ut på membranets yta eftersom attraktionskrafterna mellan Teflonet och bensinmolekylerna är starka. Dropparnas form bibehålls inte och bensinen tränger därför igenom membranet.

Diskmedel (ofta natriumlaurylsulfat som aktiv komponent) har förmågan att sänka ytspänningen hos vatten. Därför väts Gore-Tex av vatten innehållande diskmedel och vattendropparna förlorar sin form. Vattnet kan därför sippra igenom membranet.

Vattenånga, i motsats till vatten i vätskeform, består inte av droppar utan av enskilda vattenmolekyler som är så små att de utan problem kan passera membranets porer. Den fukt som avdunstar från huden kan därför ventileras bort. Även andra gaser kan passera membranet på samma sätt som vattenångan.

Fukt i form av ånga transporteras, via en process som kallas diffusion, från den varma sidan till den kalla. Det beror på att ångtrycket (men inte lufttrycket) är högre på den varma sidan. Därmed är också koncentrationen av vattenmolekyler i luften på den varma sidan högre. Av statistiska orsaker vandrar vattenmolekylerna i riktningen från hög till låg koncentration.

Den vanliga plasthandsken, som är helt tät, håller kvar all den fukt som kommer från handen. Den får utgöra referens när vi avgör hur effektivt Gore-Texmembranet andas i de olika miljöerna. Vi vet att Gore-Texmembranet är helt vattentätt så vi förutsätter att ingen vätska tränger in utifrån genom membranet.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Gore-Texmembranet som används i kläder är tillverkat av ett material som heter PTFE (Teflon, polytetrafluoroetylen). Upptäckten av PTFE skedde mer eller mindre av en slump. Inom kylskåpsindustrin experimenterade man flitigt med olika freoner för att få ett så fullgott kylmedium som möjligt. Några av medarbetarna upptäckte att trots att tuberna med en speciell freon, Freon 24, vägde lika mycket efter påfyllning så innehöll de med tiden allt mindre gas. Till slut tog en av arbetarna och helt enkelt klöv en av tuberna och upptäckte att den innehöll ett vitt pulver. När man senare undersökte det okända ämnet såg man att det hade helt unika egenskaper med oändligt många användningsområden. Genom en ren tillfällighet hade man fått fram ett ämne med egenskaper som kemister i åratal hade eftersträvat. PTFE, som ämnet senare kom att kallas, är ett kemiskt mycket motståndskraftigt, temperaturtåligt och obrännbart ämne med ytterst låg friktionskoefficient och hög slagseghet. Under namnet Teflon används PTFE till bl.a. självsmörjande lager men är nog mest känt för användandet i matlagningskärl, t.ex. stekpannor, för att förhindra att maten bränns vid.

PTFE kan närmast liknas vid en termoplast. Den består av långsträckta molekyler där den upprepade (poly-) strukturen är (-CF2-CF2-)x. Ämnet har dock en smältpunkt som ligger så högt att det sönderdelas innan det smälter. Detta medför att man inte kan smälta ihop PTFE: n till de olika produkterna utan det sintras ihop under högt tryck. Det är därför som saker tillverkade av PTFE är mjölkvita, det ligger små luftfickor mellan de sintrade partiklarna.

När man tillverkar ett Gore-Texmembran så valsar man ut PTFE:n till ett tunt skikt som man sedan sträcker på både längden och bredden. Då drar man isär de stora molekylerna och det bildas porer mellan dessa. Beroende på sträckningen kan man få olika storlek på porerna. Metoden kallas att materialet expanderas. Den här typen av membran används inom en mängd olika områden där porstorleken avgör dess specifika användning. Låt oss hädanefter inrikta oss på det membran som används inom klädindustrin.I ett Gore-Texmembran som sitter i kläder är porerna omkring 2 µm i diameter.

Enligt Gore innehåller membranet över en miljard porer per cm2. Varje por är 20 000 gånger mindre än en vattendroppe, men 700 gånger större än en vattenmolekyl. Detta förhållande, tillsammans med ämnets hydrofoba karaktär, är hemligheten bakom de unika egenskaperna.

Varför inte prova att räkna på detta påstående om storleksförhållandet mellan porer, vattendroppe och vattenmolekyl, jag fick det inte att stämma och Gore Scandinavia AB kunde inte svara på hur man kommit fram till dessa siffror.

I ett Gore-Texplagg kan man inte se själva membranet. Det sitter laminerat till olika tyger beroende på plaggets konstruktion och användningsområde.

Vind- och vattentäthet

Hur kan ett membran med över en miljard porer per cm2, som medför att ca 40 % av membranets yta är hål, vara "fullständigt" vindtätt?

Tänk dig att du befinner dig i en skog en blåsig dag. Ju tätare skogen blir desto mindre blåser det. Det beror på att friktionen mellan luftens molekyler och trädens grenar bromsar upp vinden så att när skogen tätnar orkar inte vinden blåsa förbi alla grenarna. Samma princip gäller för Gore-Texmembranet. Visst finns det hål som sträcker sig genom membranet och släpper igenom luft men kontaktytan mellan luften och molekylerna i membranet är mycket stor. Det medför att friktionen blir så hög att vinden inte orkar pressa sig genom porerna i membranet. Naturligtvis tränger luftens små molekyler genom membranet, men det går så långsamt att man inte märker det.

Hur kan ett membran med över en miljard porer per cm2 vara vattentätt? GORE påstår att membranet faktiskt tål en vattenpelare på 45 m. På grund av vattnets starka ytspänning har vattendropparna millimeter-storlek, vilket är mycket större än porerna. Vattnet väter inte det hydrofoba materialet och flyter därför inte ut. Opolära lösningsmedel, som t ex bensin, väter Gore-Tex och flyter ut så att dropparna förlorar sin form och kan tränga in i porerna. Gore-Tex är därför genomsläppligt för opolära lösningsmedel.

Vind och vattentäta material finns det gott om men det intressanta med Gore-Texmembranet är kombinationen av vind-, vattentäta och andande egenskaper. Att ett material andas innebär att det släpper igenom överskottsvärme och fukt i form av vattenånga.

Som nämnts tidigare är porerna i Gore-Texmembranet ca 2 µm och en vattenmolekyl har en diameter på ca 0,3 nm dvs ungefär 700 ggr mindre än porerna i Gore-Texmembranet. Vattenånga, som består av fria vattenmolekyler kan alltså lätt ta sig igenom membranet. En vattendroppe däremot som består av miljontals vattenmolekyler som hålls samman av vätebindningar kan omöjligt ta sig igenom membranet ens under högt tryck.

Det är viktigt att poängtera att Gore-Texmembranet inte är enkelriktat utan att egenskaperna gäller åt båda hållen. Det krävs alltså någonting som driver vattenångan i önskad riktning, från kroppen ut genom membranet.

Kokpunkt och ytspänning hos vatten

Det finns ett samband mellan ett ämnes kokpunkt och molekylvikt. Ökad molekylvikt ger ökad kokpunkt. I tabell 1 visas några ämnen, deras molekylvikter och kokpunkt.

Tabell 1. Förhållandet mellan molekylvikt och kokpunkt för olika ämnen.
Ämne Vätgas Vattenånga Kvävgas Syrgas
Molekylvikt 2 u 18 u 28 u 32 u
Kokpunkt -253 °C 100 °C -196 °C -183 °C

Vatten avviker markant från mönstret och har en mycket högre kokpunkt än de andra ämnena trots en lägre molekylvikt. Detta beror på att mellan molekylerna i vatten verkar en kraft som kallas vätebindning. Den är starkare än de krafter som verkar mellan t.ex. vätgasmolekylerna. Detta medför att det krävs mer energi för att få vatten att koka jämfört med ämnen som saknar vätebindning, eftersom vätebindningen är svårare att bryta.

Vätebindningen ger också vattnet dess höga ytspänning, som liksom en påse håller ihop vattendroppen. Anledningen till att vattnet inte går in i porerna när man lägger en droppe på Gore-Texmembranet är att ytspänningen, vätebindningarna, håller ihop molekylerna i droppen så att de inte kan vandra in i porerna, inte ens under högt tryck.

Dessutom är materialet i membranet väldigt hydrofobt, vattenfientligt. Det innehåller inga vätebindningar som kan verka för att dra till sig molekyler från vattendroppen utan krafterna verkar bara inom droppen och bibehåller dess klotform.

Kontaktvinkeln mellan vattenyta och membran är mycket brant. Jämförelserna med andra ämnen som t.ex. K-sprit (isopropanol) visar att kontaktvinkeln blir betydligt mindre för ett ämne som saknar vätebindningar. I vetenskapliga sammanhang används kontaktvinkeln som ett mått på ytkrafterna.

Temperatur, ångtryck och diffusion

Det som bestämmer åt vilket håll ångan transporteras är koncentrationen av ånga på ömse sidor av membranet. Med hjälp av diffusion sker transporten från den sida där ångkoncentrationen är högst till den sida där den är lägst.

Vattenmolekylerna står i jämvikt mellan vätskeform och gasform. Vid en högre temperatur bildas mera av gasformen, dvs ångan. Den högre ångkoncentrationen (ångtrycket) på den sida där temperaturen är högre gör att fukten vandrar från den varma sidan till den kalla sidan, även om man har vatten i vätskeform på den kalla sidan. Huden kan också, i praktiken, betraktas som vatten i vätskeform eftersom kroppen innehåller så mycket vatten. Det finns ett ångtryck även över is. Därför är det möjligt att torka kläder ute även när det är köldgrader. Det tar bara lite längre tid.

Detta ger oss också förklaringen till resultatet i försöken 3 och 4. När vattnets temperatur är lägre än handens så blir handen i Gore-Texhandsken torr, när vattnet är varmare blir handen fuktig. Det är med andra ord ingen bra idé att ta med sig sitt Gore-Texställ till tropikerna. Den effektivaste andningen uppnås när temperaturskillnaden mellan in och utsida är så stor som möjligt men rent praktiskt är det ingen vits att bära Gore-Texplagg vid riktigt sträng kyla, Eftersom det inte är någon större risk att det regnar är det bättre att välja ett annat material som inte är vattentätt men som har en bättre andningsförmåga och är smidigare vid låga temperaturer. Envisas man med att använda Gore-Texplagg kan jag nämna att andningsförmågan inte försvinner även om det fryser på insidan av membranet. Teflonet är väldigt hydrofobt och det kan inte bildas iskristaller som täpper till porerna eftersom vattnet inte vill kondensera på den hudrofoba ytan. Andningen fortgår så länge som temperaturen är lägre på utsidan eftersom det finns ett ångtryck även över is. Några av tillverkarna av Gore-Texprodukter har lanserat en vadarbyxa som man lovar ska hålla dig varm och torr även när du står upp till midjan i vatten. Det innebär att den påstås transportera ut vattenånga trots att det i fallet med vadarbyxorna är torrare på insidan.

Till slut ...

De mekanismer som styr Gore-Texmembranets andning är inte unika för just detta material utan gäller för alla textilier som inte är helt täta. Så valet av friluftskläder är långtifrån självklart. Det finns material som andas betydligt effektivare än ett Gore-Texplagg men de kanske inte är vattentäta. Allt är ju en fråga om användningsområde. Inget annat material är dock så effektivt i kombinationen mellan vattentäta, vindtäta och andande egenskaper, än ... Vad jag har för material i min skaljacka? Bomull såklart!!
/ Pär Lundquist

Fördjupning

Diffusion genom membran

Molekylrörelsen sprider partiklarna

Molekyler och andra partiklar har kinetisk energi om de har en temperatur över den absoluta nollpunkten -273 °C. Denna energi gör så att molekyler alltid är i rörelse. I fasta ämne kan partiklarna bara vibrera, men i gaser och lösningar kan partiklarna börja vandra omkring. Det gör att partiklarna blandas med varandra.

Diffusion är ett resultat av denna rörelse. Rörelsen gör att alla molekyler eller joner oavsett ämne sprider sig i så hög grad de kan, precis på samma sätt som värme sprider sig. Alla molekylers rörelser är slumpvisa vad gäller riktning men de rör sig fortare ju mer värmenergi de har, dvs. ju större lagrad hetta.

Trots att rörelserna är slumpvisa så kan man med hjälp av sannolikhetslära bestämma att nettotransporten av en viss typ av molekyler kommer att ske till största del i en viss riktning under en bestämd tid. Statistiken visar att nettotransport sker från områden med hög koncentration till områden med låg.

Ett membran blir en barriär som skiljer lösningar åt

Man kan skilja två lösningar eller gasblandningar åt med ett membran. Sammansättningen av partiklar blir då olika på de två sidorna. Eftersom diffusionen tenderar att blanda partiklarna så att det till slut blir lika koncentration överallt, så får man en nettotransport över membranet åt ett bestämt håll som beror på koncentrationerna.

Diffusionen genom membranet är alltid långsammare än i lösningen eller gasblandningen. Men hastigheten kan ökas genom att välja ett membran som dels är väldigt poröst, dels mycket tunt.

Membranet kan fungera som ett filter

En möjlighet med membraner är att sortera bort större partiklar som inte ryms i porerna. Till exempel kan diffusion av vatten genom membran användas för vattenrening. Både smutspartiklar och bakterier undviks då.

Diffusion genom membran som skiljer två lösningar med olika koncentration

Nettotransporten vid diffusion sker från hög koncentration till låg.
Bild: Svante Åberg

I bilden föreställer de blå partiklarna ett löst ämne. Lösningen kan vara en vätska, men gasblandningar är också en typ av lösningar. Barriären i mitten är ett semipermeabelt membran som har tillräckligt stora porer för att släppa igenom den små blå partiklarna.

Koncentrationen av lösta partiklar är högre på den vänstra sidan om membranet. Det är troligast att fler av de lösta partiklarna kommer att röra sig från den vänstra sidan av det semipermeabla membranet till den högra än tvärtom. Anledningen är att det finns fler partiklar som kan röra sig åt höger. Det leder till att koncentrationerna utjämnas och så småningom blir lika på båda sidor om membranet.


Nettotransporten blir noll när koncentrationerna är lika

Nettotransporten vid blir noll när koncentrationerna är utjämnade.
Bild: © Svante Åberg

Eftersom molekylrörelserna fortsätter kommer några av molekylerna att röra sig tillbaka till den vänstra sidan om membranet samtidigt som några andra molekyler rör sig till den andra sidan.

Men transporten är lika snabb åt båda håll eftersom koncentrationerna blivit lika på båda sidor. Därför sker ingen nettotransport sedan jämvikt ställt in sig. Man använder benämningen dynamisk jämvikt (dynamiskt eqilibrium) när en jämvikt ställt in sig trots att reaktioner fortfarande sker. Koncentrationerna av partiklar är stabila.

Rent teoretiskt är det inte omöjligt att alla lösta partiklar, av en slump, vid något kort tillfälle skulle befinna sig på den ena sidan om membranet. Detta är dock synnerligen osannolikt.


Koncentrationsgradienten bestämmer diffusionshastigheten

Ju brantare lutningen hos koncentrationskurvan är, desto snabbare sker diffusionen genom membranet.
Bild: Svante Åberg

Diffusionshastigheten är proportionell mot storleken av koncentrationsgradienten. Därför är koncentrationsgradienten av betydelse.

Med koncentrationsgradient menas hur mycket koncentrationen förändras per längdenhet i en bestämd riktning.

Koncentrationsgradientens storlek inuti membranet är differensen i koncentrationen på ömse sidor av membranet dividerat med membranets tjocklek. Du tunnare membranet är, desto större blir koncentrationsgradienten.

Om membranet dessutom är tunnare, så blir sträckan att vandra kortare. Därför ökar diffusionen genom ett membran mycket snabbt när membranet görs tunnare.

När de lösta partiklarna är för stora får vi osmos

Det semipermeabla membranet släpper igenom de små molekylerna (ex. vatten), men hindrar de stora (ex. socker).
Bild: Svante Åberg

I de fall då difussion sker genom någon form av barriär, som inte släpper igenom alla typer av ämnen, talar man om osmos.

Effekten av att det finns lösta partiklar som inte kan passera genom membranet är att förändra koncentrationen av de partiklar som faktiskt kan passera. Man kan säga att det lösta ämnet späder ut lösningsmedlet.

Det leder till en koncentrationsgradient över membranet där det rena lösningsmedlet utan löst ämne har högre koncentration. Då sker diffusion av lösningsmedel från sidan utan löst ämne till den sida där det finns löst ämne.

Det räcker att det finns en koncentrationsskillnad mellan sidorna för att få en koncentrationsgradient. Det behöver alltså inte vara rent lösningsmedel på ena sidan.

Resultatet av osmosen är att koncentrationerna utjämnas.

Osmos är särskilt intressant när det gäller levande organismer då våra cellmembran är genomsläppliga för vissa typer av molekyler men inte för andra. Detta skyddar till viss del cellerna från att invaderas av oönskade ämnen.

Aggregationsform

Faserna och fasövergångarna

Allt som finns runtomkring oss är antingen fast, flytande (vätska) eller i gasform. Dessa former kallas aggregationsformer (aggregation = hopklumpning) eller faser. Atomerna (eller molekylerna) i de olika faserna har olika stort energiinnehåll, olika stor rörelse, och har därför olika volym.

Fast form vid låg temperatur

Vid den absoluta nollpunkten, -273°C = 0 K, finns ingen atomrörelse (K är Kelvin, enheten för absolut temperatur). Alla ämnen är fasta och atomerna ligger regelbundet ordnade så tätt som möjligt. Om temperaturen höjs börjar atomerna vibrera kring sina jämviktslägen. Det fasta ämnet behåller sin form och inom måttliga temperaturintervall och volymen är nästan konstant. Massan är densamma.

Den lilla utvidgning som sker vid värme kan räcka för att lossa en mutter genom att värma på den. Förr var man tvungen att lägga järnvägsräls med mellanrum i skarvarna, för att undvika att rälsen böjde sig under varma dagar, s.k. solkurva. Nutidens järnvägsräls läggs av en formbeständigare metallblandning.

Övergår till vätska (blir flytande) när temperaturen når smältpunkten

När temperaturen stiger ytterligare rubbas atomerna ur sina jämviktslägen. De börjar glida i förhållande till varandra och har blivit en vätska. Fasövergången sker vid smältpunkten. Så länge det finns fast material ligger temperaturen kvar på smältpunkten och stiger inte, även om man tillför värme. Det beror på att all energi går åt till fasövergången. Vätskor ändrar form efter de kärl de förvaras i och har i allmänhet något större volym än samma ämne i fast form (Känt undantag är is, som har större volym än samma mängd vatten pga lucker kristallstruktur hos isen). Mellan molekylerna i vätskan finns sammanhållande krafter. Massan är densamma i vätskan som i den fasta fasen.

Övergår till gas när temperaturen når kokpunkten
En gas fyller upp hela det kärl som den förvaras i.
Bild: © Svante Åberg

Om temperaturen i vätskan höjs, ökar molekylernas rörelseenergi och till slut får några så stor energi att de lämnar den flytande fasen. Övergången från vätska till gas sker när temperaturen nått kokpunkten. Det har bildats en gas. Gasen har ingen bestämd form. Den anpassar sig efter det utrymme den finns i, eftersom molekylerna är helt fria från varandra och färdas rakt fram ända till dess de stöter på någonting, som kan vara kärlets väggar. De krockar också med varandra och byter riktning men dessemellan färdas de "långa" sträckor i absolut tomrum. Gasen har mycket större volym än samma mängd ämne i flytande form och molekylerna i en gas är så långt ifrån varann att de inte påverkar varann. Därför blandas olika gaser lätt. Volymen hos en gas är beroende av temperaturen. Med högre temperatur ökar molekylernas rörelsehastighet, krockarna mellan molekylerna och väggarna blir hårdare. Kollisionerna med väggarna är det vi kallar tryck. Kan väggen utvidgas ökar volymen, i annat fall ökar trycket. Massan är densamma.


Fasövergångarna har bestämda namn. När temperaturen öker sker smältning och förångning (kokning). När temperaturen minsakar sker de motsatta processerna som kallas kondensation och stelning. Observera att smältpunkten och stelningspunkten är exakt samma temperatur. På motsvarande sätt är kokpunkten och kondensationspunkten (för den rena gasen) samma temperatur.

Sublimering


Fasdiagram för koldioxid.
Ben Finney Mark Jacobs: CC0

Fasta ämnen kan övergå direkt till gas utan att först bli vätska. Förutsättningen är att temperatur och tryck befinner sig under ämnets trippelpunkt i ett fasdiagram. Man säger att ämnet sublimerar. Det är en endoterm process, dvs. en process som kräver energitillförsel. Oftast tas energin i form av värme från om givningen, vilket innebär att temperaturen sjunker.

Den motsatta processen när gas övergår direkt till fast form utan att först bilda en vätska kallas desublimering eller deposition. Den processen är exoterm, dvs. avger energi, vanligen i form av värme. Även denna process kan bara ske när tryck och temperatur ligger under ämnets trippelpunkt.

Superkritisk vätska

Över en viss temperatur och visst tryck går det inte längre att urskilja någon fasgräns mellan vätska och gas. Densiteten är hög, praktiskt taget som hos en vätska. Den höga temperaturen får molekylerna att fritt röra sig mellan faserna så att fasgränsen upplöses.

Den superkritiska vätskan har egenskaper utöver det vanliga. Den har förmåga att diffundera genom många fasta material på samma sätt som en gas gör. Samtidigt har den förmåga att lösa ämnen på samma sätt som en vätska gör. Förmågan att fungera som lösningsmedel gör att den i vissa tillämpningar kan ersätta organiska lösningsmedel, till exempel i extraktioner.

Koldioxid är ett ämne som ofta används i tillämpningar med superkritiska vätskor.

Plasma är en fjärde aggregationsform

De tre vanliga aggregationsformerna fast, flytande och gas bestäms av bindningarna mellan atomerna eller molekylerna. Ju varmare det är, desto lösare är atomer och molekyler kopplade till varandra.

Men vid tillräckligt hög temperatur sker någon helt annorlunda, nämligen att elektroner i atomerna slits loss och man får en blandning av positiva atomjoner och fria elektroner. Det är en typ av gasblandning som är elektriskt ledande.

Solen innehåller plasma

Sådan plasma finns i solens atmosfär. Eftersom den är elektriskt ledande, så fångar plasman också upp de starka magnetfälten från solens inre. Vid soleruptioner slungas plasma ut i världsrymden och man kan se hur magnetlinjerna i plasman håller samman plasman i böljande stråk. Dessa utkastningar av laddade partiklar strålar sedan vidare ut från solen och når så småningom jorden. Eftersom rymden är så tom har elektronerna och atomjonerna svårt att hitta varandra igen och återförenas till normala atomer. Därför är partikelstrålningen från solen elektriskt laddad. När partiklarna kommer in i jordens magnetfält tunnlas de ned via magnetfälten vid nord- och sydpolen. När de laddade partiklarna kommer ned till jordatmosfären sker kollisioner med luftens atomer och molekyler. De energier som då utvecklas ger det norr- och sydsken som man kan se mörka, klara vinternätter.

Andra exempel på plasma

I blixtar blir också temperaturen tillräckligt hög för att luftens atomer ska bilda plasma. Det gör att elektriska urladdningar kan ske via blixtens väg mellan molnen och jorden.

En eldslåga innehåller plasma. Faktiskt avger en stearinljuslåga joner till den omgivande luften. Dessa joner kan urladda statisk elektricitet. Om du har en dammvippa av syntetiska fibrer och du har laddat upp den med statisk elektricitet, så kan du observera vad som händer om du närmar den ett brinnande ljus. Redan på håll, så urladdas den statiska elektriciteten. Det beror på att jonerna accelereras till vippan av det elektriska fältet kring den statiskt uppladdade vippan. Detta experiment fungerar bara om luften är tillräckligt torr, annars kan man inte ladda upp vippan. Därför fungerar experimentet bäst vintertid då inomhusluften är torrare.

Konstgjord plasma finns också i lysrör och i plasmaskärmar för datorer.

Fasövergångar och bindningar

Det är lätt att konstatera att smält- och kokpunkter för ämnen kan variera mycket. Vissa ämnen är svåra att tänka sig på annat än ett sätt till vardags. Sten, koksalt och stål är fasta, bensin och alkohol är flytande och luft och gasol är gaser. Många vet också att i extrema fall, t ex i vulkaner, flyter mineralerna (stenen) och att när man svetsar flyter stålet. Det enda ämne man i vardagen möter i alla tre aggregationsformerna är vatten.

Starka bindningar ger höga smält- och kokpunkter

Mineraler och metaller är alltså exempel på ämnen med hög smältpunkt. Att det är så beror på styrkan hos de bindningar som håller ihop ämnena. Alla salter är uppbyggda av joner.

Attraktionskraften mellan positiva och negativa joner, jonbindning, är stark och salter har därför hög smältpunkt.

Mellan de enskilda atomerna i en metall finns metallbindning. Metallbindningen utgörs av de ingående atomernas valenselektroner som bildar ett gemensamt elektronmoln för hela "metallbiten". För att bryta den bindningen krävs mycket energi, vilket ger hög smältpunkt. Ett känt undantag är kvicksilver, en metall som är vätska vid rumstemperatur och alltså har svagare metallbindning.

Även kovalent bindning när atomer delar elektroner kan vara mycket stark. Faktum är att diamant och grafit, kolatomer sammanhållna av kovalenta bindningar har högre smältpunkt än alla metaller.

Svaga bindningar ger låga smält- och kokpunkter

Ämnen uppbyggda av molekyler (eller atomer som i ädelgaserna) har starka kovalenta bindningar mellan atomerna inom molekylerna men svagare bindningar mellan molekylerna. Det gör att smält- och kokpunkten blir relativt låg.

Den svagaste bindningen finns mellan molekyler och atomer är van der Waalsbindning. Den uppkommer pga mycket tillfälligt ojämnt fördelade elektronmoln hos opolära molekyler (atomer). Bindningarna finns både i fast fas och vätskefas. Eftersom bindningen är så svag blir smältpunkten låg, i många fall nedåt eller under -200°C. Den svaga bindningen gör också att skillnaden mellan smält- och kokpunkt blir liten.

Mellan ämnen som är dipoler förekommer dipol-dipolbindning där den positiva polen hos en molekyl attraherar den negativa hos nästa. Smält- och kokpunkten blir låg men högre än med enbart van der Waalsbindning.

För vissa ämnen som är dipoler är smält- och kokpunkten oväntat hög och avståndet mellan smält- och kokpunkten relativt stort. Vatten är ett bra exempel på detta. Det måste bero på starkare bindning än enbart mellan dipoler. De ämnen som har de egenskaperna innehåller alla väte. Vätet är bundet till en fluor-, syre- eller kväveatom, som drar till sig elektronparet i bindningen. Vätet blir positivt och kan attraheras av icke-bindande elektronpar på t ex en syreatom på en intilliggande molekyl. Det bildas en vätebindning. Den är starkare än van der Waalsbindningen och dipol-dipolbindningen. Vätebindningar har stor betydelse för att stabilisera strukturen i bl a proteiner och DNA.

Gas

Gaser har speciella egenskaper som skiljer dem från vätskor och fasta ämnen. I en gas är avståndet mellan partiklarna mycket större än i en vätska. Avståndet är så stort att det inte finns några intermolekylära krafter som håller ihop partiklarna. De rör sig med stor hastighet, oordnat och fritt från varandra.

Gastryck av molekylernas kollisioner

En molekyl är väldigt liten, men det finns väldigt många! Varje gång en molekyl stöter emot ytan, på en burk t ex, så ger den en liten rekyl som tenderar att stöta bort föremålet. Alla molekylernas stötar ger tillsammans ett tryck som är större än man normalt föreställer sig. Vid normalt lufttryck är kraften 1000 N per dm2. Det motsvarar tyngden av 100 kg på varje kvadratdecimeter eller tyngden av 10 ton på varje kvadratmeter!

Att inte burkar, människor, fotbollar med mera trycks ihop av de väldiga krafterna beror på att det finns ett mottryck inifrån som är lika stort.

I figuren nedan ser man att det är fler molekyler som kolliderar med väggen på vänster sida än på höger. Gastrycket är alltså högre på vänster sida om väggen.

Gastrycket orsakas av molekylernas många små stötar. Gastrycket till vänster om väggen är högre därför att det är fler kollisioner.
Bild: © Svante Åberg

Kollisionerna på ömse sidor om väggen är ungefär lika kraftiga, vilket betyder att partiklarna rör sig ungefär lika fort. Man kan alltså dra slutsatsen att temperaturen är densamma på båda sidor om väggen.

Temperatur, kärlets volym och substansmängden påverkar trycket

Partiklarna kolliderar med varandra och med det omgivande kärlet. Det utgör gasens tryck. Trycket hos en gas beror på flera saker:

Alltså, trycket är proportionellt mot absolut temperatur och substansmängd och omvänt proportionellt mot volymen. Detta kan sammanfattas i Allmänna gaslagen.

Allmänna gaslagen:
pV = nRT
p = tryck, Pa
V = volym, m3
n = substansmängd, mol
T = temperatur, Kelvin
R = proportionalitetskonstant = 8,3145 J K-1 mol-1

Molvolym

Gasmolekylernas sammanlagda volym är väldigt liten i förhållande till gasens totala volym. Detta gör att en viss substansmängd av i stort sett alla gaser har samma volym vid samma tryck och temperatur. Gaserna har samma molvolym, och vid standardtryck och standardtemperatur (STP: p = 1 atm = 101,325 kPa = 1,01325 bar, T = 25 °C = 298,15 K) är molvolymen 24,47 dm3/mol.

Gasens densitet

Enklast är att räkna på en mol av gasen. Till exempel väger en mol koldioxid (CO2) 12,0 g + 2·16.0 g = 44,0 g. Vid standardtemperatur och tryck (se ovan) är molvolymen 24,47 dm3. Då är densiteten 44,0 g/24,47 dm3 = 1.80 g/dm3.

Luft består till ungefär 20% av syrgas (O2) och 80% kvävgas (N2). En mol syrgas väger 2·16.0 g = 32.0 g. En mol kvävgas väger 2·14.0 g = 28.0 g. En mol luft innehåller 0,20 mol syre och 0,80 mol kväve. En mol luft väger då 0,20·32,0 g + 0,80·28,0 g = 28,8 g. Vikten genom molvolymen blir då 28,8 g/24,47 dm3 = 1.18 g/dm3.

Dessa två beräkningar visar att koldioxid är tyngre än luft. Därför sjunker koldioxid till marken när den släpps ut i luften.

En motsvarande beräkning av densiteten för vattenånga (H2O) ger densiteten 18,0 g/24,47 dm3 = 0,73 g/dm3. Man kan alltså se att vattenångan är mycket lättare än luften. Därför stiger vattenånga som avdunstar från marken och vattendragen uppåt i osynliga bubblor av ånga. När vattenångan kommit tillräckligt högt är temperaturen så låg att den kondenserar till vattendroppar och blir synlig i form av moln.

Gaspartiklarnas rörelseenergi

Gaspartiklarna rör sig slumpmässigt, men i genomsnitt har de en rörelseenergi som motsvarar temperaturen. Ju högre temperaturen är, desto snabbare rör sig partiklarna. Temperaturen är därför ett mått på gaspartiklarnas rörelseenergi.

När man har en blandning av gaspartiklar som väger olika mycket, så får olika tunga partiklar ändå samma genomsnittliga rörelseenergi. Det innebär att tunga gaspartiklar rör sig långsammare än lätta gaspartiklar, annars skulle inte rörelseenergierna vara lika.

Till exempel rör sig vätemolekyler (H2) med molekylmassan 2 u 3.74 gånger snabbare än kvävemolekyler (N2) med molekylmassan 28 u. Man skulle kunna tro att vätet skulle röra sig 14 gånger snabbare eftersom kvävet är 14 gånger tyngre, men rörelseenergin är proportionell mot kvadraten på hastigheten. Därför blir kvoten mellan hastigheterna √ 28/2 = √ 14 = 3.74.

Avdunstning

Avdunstning (förångning) innebär att molekylerna i en vätska sliter sig loss från vätskefasen och övergår till gasfas. Normalt talar man om avdunstning för temperaturer som ligger under kokpunkten, men kokning innebär bara att avdunstningen blir snabbare.

Avdunstningen innebär en fasövergång, att molekylerna övergår från att vara i vätskeform till att vara i gasform. Vätskan och gasen är olika faser av samma ämne. Med en fas menar man ett område där ämnet ser likadant ut, t.ex. att det är flytande eller fast.

Motsatsen till avdunstning är kondensation, dvs. när en gas övergår till vätska.

Vattnet blir kallare när det det avdunstar

Avdunstning
Bild: © Svante Åberg

Vatten i ett öppet kärl avdunstar. Avdunstningen är en process om kräver energi, faktiskt samma energi som när vattnet förångas genom kokning. Mellan vattenmolekylerna finns attraktionskrafter. När en molekyl ska lämna vattenytan måste den övervinna dessa attraktionskrafter, som vill dra den tillbaka. Det kräver energi.

Vattenmolekylerna har rörelseenergi. Ju varmare vattnet är, desto snabbare rör sig molekylerna. I vatten av en viss temperatur rör sig dock några molekyler snabbare och några långsammare. De snabbaste vattenmolekylerna är de som lättast lämnar vätskeytan och förvinner ut i luften. Kvar blir de långsammare, "kallare", molekylerna. Vattnets temperatur sjunker därför på grund av avdunstningen.

Andra vätskor beter sig på samma sätt som vatten. Skillnaden är hur starka bindningarna är mellan molekylerna i vätskefasen. Till exempel är bindningarna mellan etanolmolekyler svagare än bindningarna mellan vattenmolekyler. Det innebär att etanol avdunstar snabbare vid samma temperatur. Även om varje etanolmolekyl inte för bort lika stor energimängd från lösningen, så kan avdunstningen vara så snabb att avkylningseffekten ändå blir större än för vatten räknat per tidsenhet. Men avdunstningen kan inte pågå lika länge eftersom all etanol har avdunstat långt innan allt vatten har hunnit avdunsta.

material på avancerad nivå kommer att läggas in här

Ångtryck och kokpunkt

Ångtryck och yttre tryck lika vid kokpunkten
Bild: © Svante Åberg

I en bägare med vatten trycker luften på vätskeytan med 1 atmosfär, vilket är cirka 1000 N dm-2. Det motsvarar tyngden av 100 kg på 1 dm2. Å andra sidan bildas ett tryck i vätskan av den ånga som bildas när vatten avdunstar. Ångtrycket ökar snabbt med temperaturen. Vid 100 °C är ångtycket lika stort som atmosfärstrycket. Det är den temperatur då vattnet börjar koka. Det som händer är att ångtrycket av bubblorna i vätskan övervinner atmosfärens tryck. Då blir det möjligt för bubblorna att expandera (utvidgas).

Om lufttrycket ovanpå vätskan är lägre, så krävs inte lika hög temperatur för att ångtrycket ska övervinna lufttrycket. Därför kokar vatten vid lägre temperatur när trycket sänks. Det är vad som sker när man drar ut pistongen i sprutan. Trycket blir faktiskt så lågt i experimentet att vattnet kokar redan vid rumstemperatur.

Vattnets ångtryck som funktion av temperaturen
Bild: © Svante Åberg

I diagrammet till höger kan man avläsa ångtrycket för vatten vid olika temperaturer. Om man vill veta vid vilken temperatur vattnet kokar vid ett viss tryck, så går man från y-axeln till grafen och ned till x-axeln. T ex kan man för 0,5 atmosfärer avläsa att vattnet kokar vid 80 °C.

Andra vätskor uppför sig på liknande sätt som vatten, men ångtrycket kan vara genomgående högre eller lägre än för vatten. Ren etanol kokar (dvs uppnår en atmosfärs ångtryck) vid 78,5 °C, isopropanol vid 82,4 °C och aceton vid 56,2 °C.

Explosionsrisk med instängda vätskor

Om man stänger in vatten i en tät behållare, som man värmer, kan trycket stiga långt över 1 atmosfär. I diagrammet ser vi att det räcker med cirka 120 °C för att nå dubbla lufttrycket, och trycket fortsätter öka mycket snabbt med ökande temperatur. För eller senare brister behållaren som vattnet finns i och man får en explosion. Kraften i en sådan explosion är långt större än vad man normalt kan föreställa sig och kan vara rent livsfarlig. Dessutom är de expanderande gaserna skållheta och kan leda till svåra brännskador. Värm därför aldrig ett tätslutande kärl som innehåller vätska!

Varmvattenberedare är exempel på att man värmer vatten som är instängt. Temperaturen kontrolleras emellertid av en termostat så att temperaturen aldrig når kokpunkten. Man måste ställa höga krav på temperaturkontrollen. Det har hänt att varmvattenberedare exploderat med svåra följder.

Lufttrycket på Mount Everest

Lufttrycket på toppen av Mount Everest, som är 8853 m högt, är bara 33 % av trycket på havets nivå. Luften är så tunn att helikoptrar inte kan flyga. Flygplanet Boeing 747 (Jumbo Jet) brukar flyga bara något högre än Mount Everest, nämligen på 34 000 fots höjd, vilket är 10 363 m.

För bergsbestigarna är det svårt att få tillräckligt med syre eftersom varje andetag bara ger en tredjedel så mycket luft. Kroppens reaktion på lågt lufttryck är att producera fler röda blodkroppar för att öka syreupptagningsförmågan. Under OS 1968 i Mexico, som hölls på hög höjd, vanns 4 av 5 långdistanslopp av idrottsmän som levt på höga höjder.

Ett lustigt fenomen är att vatten kokar redan vid 70 °C på toppen av Mount Everest.

mer material på avancerad nivå kommer

Ångtryck över lösningar

Trycket kommer från gasmolekylernas kollisioner

Gasmolekyler rör sig snabbt och kolliderar ständigt med fasta ytor. Alla de små kollisionerna ger ett tryck på ytan. Det trycket kallar vi för gastryck, eller ångtryck.

Om det finns olika sorters gasmolekyler, några lättare och några tyngre, så påverkas trycket ändå inte av hur tunga molekylerna är. Det beror på att temperaturen jämnar ut sig för alla sorters molekyler så att de får samma rörelseenergi. De tyngre molekylerna rör sig långsammare än de lättare. Resultatet blir att ett antal molekyler av en sort ger samma tryck som lika många molekyler av en annan sort.

Vatten som avdunstar ger ångtryck

Om vi har vanlig luft så är innehållet cirka 20% syre och 80% kväve. Dessutom finns små mängder av vattenånga. Om det avdunstar mycket vatten så att luften blir fuktigare, så ökar andelen vattenånga. Vattenångan är också en gas, men molekylerna är vatten. På samma sätt som syre och kväve ger vattenångan ett ångtryck.

Men om det flytande vattnet inte är rent vatten, utan innehåller lösta ämnen, så avdunstar vattnet inte lika lätt. Det gör att ångtycket av vattenångan blir lägre över en vattenlösning innehållande t.ex. salt. Ju mer löst ämne i vattnet, desto lägre blir vattnets ångtryck.

Inverkan av det lösta ämnet i vattnet

Vi ska försöka reda ut hur ett löst ämne med hög kokpunkt (icke flyktigt) påverkar ett lösningsmedel: När vi löser ett ämne med hög kokpunkt i ett lösningsmedel, så kommer det lösta ämnet att minska antalet lösningsmedelmolekyler per volymenhet, dvs. koncentrationen av lösningsmedlet minskar genom utspädning. Antalet lösningsmedelsmolekyler på ytan minskar på motsvarande sätt. Färre molekyler har därför tillfälle att avdunsta från vätskeytan, och avdunstningen blir långsammare. I exempelvis en lösning med 50% av ett icke flyktigt löst ämne och 50% molekyler av lösningsmedlet så blir avdunstningen av lösningsmedel hälften så snabb. Om lösningen befinner sig i ett stängt kärl så kommer luften ovanför att så småningom mättas med ånga så att jämvikt uppstår. Ångtrycket vid jämvikt över den 50%-iga lösningen kommer då att vara hälften så stort som ångtrycket över rent lösningsmedel.

Bild: © Svante Åberg
Vid jämvikt är ångtrycket ungefär proportionellt mot koncentrationen av lösningsmedel i lösningen.

Raoults lag

Detaljerade studier om gastryck av lösningar där det finns ett löst ämne med hög kokpunkt, utfördes av Francois M. Raoult (1830- 1901). Hans resultat är sammanfattat som Raoults lag.

Plösning = Xlösningsmedel·Prent lösningsmedel

där
Plösning = ångtrycket vid jämvikt över den aktuella lösningen
Xlösningsmedel = andelen lösningsmedel i lösningen
Plösningsmedel = ångtrycket vid jämvikt över det rena lösningsmedlet

I en lösning där hälften är molekyler av det lösta ämnet och andra halvan molekyler av lösningsmedel, är Xlösningsmedel = 0,5 och man får Plösning = 0,5·Prent lösningsmedel.

Raoults lag förutsätter ideala lösningar där bindningskrafterna är lika starka oberoende av om det är mellan lösningsmedelsmolekyler, mellan lösta molekyler av det lösta ämnet eller mellan löst ämne och lösningsmedel. Detta är inte fallet i verkliga lösningar, varför lagen bara gäller approximativt.

Vattenånga i jämvikt med vattenlösning

Avdunstning och kondensation sker samtidigt

Från en vattenyta avdunstar vattenmolekyler som gör luften fuktigare. Samtidigt kan vattenånga i luften kondensera och bilda vatten. Båda processerna sker hela tiden, men vi kan inte se det omedelbart. Men väntar man från en dag till en annan kan man se att ett fat med vatten torkar upp, vilket visar på att avdunstning har skett. Man kan också se att det bildas dagg på marken när luften är fuktig och sval, vilket är ett exempel på kondensation.

Motsatta processer leder till jämvikt

Processerna pågår hela tiden, men närmar sig ett jämviktstillstånd. Om temperaturen är hög, så är halten av vattenånga i luften högre vid jämvikt. Det är orsaken bakom att den värmande solen gör att marken torkar upp och det bildas stackmol på himlen framemot eftermiddagen. Molnen kommer från vattnet som har avdunstat.

När det är kallt så innehåller luften bara lite vattenånga vid jämvikt. Daggen bildas under natten eftersom det är då det blir kyligt. Det är också därför som luften är torrare inomhus vintertid. Inomhusluften kommer ju utifrån via ventilationen.

Avdunstning

När man har en vattenlösning avdunstar vattenmolekyler från ytan. Avdunstningen innebär att vattenmolekyler lyckas slita sig loss från sina grannar och flyga iväg upp i gasfasen ovanför vätskan. Det krävs energi för att slita sig loss. Den energin kommer från molekylernas temperaturrörelser. Bara de snabbaste molekylerna rör sig tillräckligt snabbt för att avdunsta.

Hur snabb avdunstningen är beror på två saker. Det handlar dels om koncentrationen av vattenmolekyler vid ytan, dels hur snabbt molekylerna rör sig.

Rent vatten har maximal koncentration. Det finns många vattenmolekyler per ytenhet, dvs. det är många vattenmolekyler som har en chans att lämna vätskan och avdunstningen blir därför relativt snabb. Om man har en vattenlösning, t.ex. av ett salt, så är en del av utrymmet upptaget av saltjonerna som dessutom binder till sig som ett skal av vattenmolekyler som inte är fria att röra sig. Det betyder att koncentrationen av fria vattenmolekyler i lösningen är lägre än i rent vatten. Det är då färre molekyler som har en chans att avdunsta, vilket gör att avdunstningen blir långsammare. I stort sett är avdunstningshastigheten proportionell mot andelen fria vattenmolekyler i lösningen. Om en lösning t.ex. bara innehåller 60 % så många fria vattenmolekyler per ytenhet som rent vatten, så kommer avdunstningshastigheten att vara ungefär 60 % av avdunstningen från rent vatten.

Det andra som påverkar avdunstningshastigheten är temperaturen. För att kunna avdunsta måste en vattenmolekyl röra sig tillräckligt snabbt. Temperaturen är en mått på hur snabbt molekylerna rör sig i genomsnitt. Temperaturrörelsen är kaotisk med krockar mellan molekylerna som ibland får en puff så att de rör sig snabbare, ibland bromsas upp. Det är bara en liten andel av molekylerna som rör sig så snabbt att de kan slita sig loss från sina grannar i vätskan och avdunsta ut i gasfasen. Men ju högre temperaturen är, desto större är andelen som faktiskt är tillräckligt snabba och har chansen att lämna vätskeytan. Därför är avdunstningen snabbare vid högre temperatur.

Kondensation

Kondensation är den motsatta reaktionen till avdunstning. När vattenmolekyler i luften träffar vätskeytan är sannolikheten stor att de fångas upp. Molekylerna som fångas upp övergår från gas- till vätskeform.

Hur snabbt vattenångan kondenserar beror på hur många vattenmolekyler det finns i gasen som kan kondensera. Om luften är helt torr, dvs. med 0 % relativ luftfuktighet, så finns det ingen vattenånga som kan kondensera. Vid 100 % relativ luftfuktighet är kondensationen maximal.

Jämvikten

Eftersom avdunstning och kondensation är motsatta processer, så beror det på vilken som är snabbare om det blir en nettoavdunstning eller nettokondensation. Om vi har nettoavdunstning så tillförs gasen mer vattenånga än den förlorar. Det betyder att halten av vattenångan ökar. Men när halten av vattenånga ökar så ökar också kondensationshastigheten. Det betyder att skillnaden i hastighet mellan avdunstning och kondensation minskar. Till slut är kondensation och avdunstning lika snabba. Då är nettoförändringen noll, det "händer ingenting".

Bild: © Svante Åberg
Avdunstningen är hela tiden lika snabb eftersom koncentrationen av vattnet i lösningen är konstant. I början när luften är helt torr sker ingen kondensation. När tiden går ökar vattenångan i luften och därför också kondensationen. Till slut kondenserar vattenånga lika snabbt som vatten avdunstar. Då har nettoavdunstningen sjunkit till noll.

Bild: © Svante Åberg
När lika många vattenmolekyler lämnar vattenytan genom avdunstning som de som fångas upp i vattenytan genom kondensation, så blir nettoresultatet ingen förändring, dvs. man har dynamisk jämvikt.

Jo, faktiskt pågår avdunstning och kondensation fortfarande med full fart, men det märks ingen förändring. Ett sådant tillstånd kallas dynamisk jämvikt. "Dynamisk" syftar på att reaktionerna pågår, "jämvikt" syftar på ett tillstånd där det inte sker någon nettoförändring. I detta exempel har jämvikt nåtts mellan processerna:

H2O(l)H2O(g)
H2O(l)H2O(g)

Att jämvikt föreligger utmärks ofta med dubbla pilar, alltså H2O(l) ⇌ H2O(g).

Relativ luftfuktighet

Den relativa luftfuktigheten styr avdunstning och kondensation

Avdunstning från en vattenyta sker så länge som den relativa luftfuktigheten är lägre än 100 %, vilket innebär att ångtrycket ovanför vätskan är tillräckligt lågt för att de snabba molekylerna ska kunna lämna vätskan. Hur mycket vatten luften kan innehålla beror på temperaturen, ju varmare luft desto mer vatten kan den innehålla. Vattenmolekylerna i varm luft har högre hastighet och kan då studsa ifrån varandra vid kollisionerna istället för att som i kallare luft fastna i varandra och bilda vattendroppar. Luftfuktigheten är alltså maximal (100 %) då maximal mängd vattenånga för den aktuella lufttemperaturen är uppnådd, dvs. luften är mättad.

Meteorologerna brukar tala om den relativa luftfuktigheten, de jämför då den mängd vattenånga som luften innehåller med den maximala mängden som luften vid den aktuella temperaturen kan innehålla. En temperatur av ca 20 °C med en relativ luftfuktighet på 50 - 60 % upplevs av de flesta människor som behagligt. Om den relativa luftfuktigheten är för hög sker kondensation, det vill säga en övergång från vattenånga till flytande vatten, i stället för avdunstning och vi upplever luften som klibbig.

Att mäta relativ luftfuktighet

För att mäta den relativa luftfuktigheten använder meteorologer en anordning av två termometrar, en så kallad psykrometer. Den ena termometern har en fuktad gasbinda fäst runt kulan medan den andra är som vanligt. Då vatten avdunstar från termometern med gasbinda kommer den att visa en lägre temperatur än den torra termometern. Ju större temperaturskillnad som uppmäts mellan de båda termometrarna desto torrare luft är det.

Tabell 1: Luftfuktighet i procent
Temp. torra
termometern
Temperaturskillnad mellan termometrarna
0 °C1 °C2 °C3 °C4 °C5 °C6 °C7 °C8 °C9 °C10 °C
30 °C9791847872666055494440
25 °C9790837669625650443933
20 °C9789817365585144383225
15 °C9788797061534437292215

(Diagram och tabell är hämtade från P-G Andbert och G Mattson, 1994)

Exempel på effekter av den relativa luftfuktigheten

I tabellen ovan kan man avläsa att det vid en temperatur av 20 °C och med en temperaturskillnad på 5 °C är en relativ fuktighet på ca 58 %. Detta innebär att luften kan ta emot nästan dubbelt så mycket vattenånga innan moln eller dimma bildas. Vattendropparna i moln och dimma är mycket små, 0,001 - 0,1 mm, dessa växer till sig då luften stiger. Detta sker eftersom luften kyls ner och vattendropparna kan slå sig samman till större underkylda vattendroppar och kristaller. När sedan dessa blivit tillräckligt stora, cirka 0,5 - 3 mm, kan de falla ur molnet som nederbörd. Om atmosfären är kall med minusgrader även längst ner kommer nederbörden i form av snö och om det är varmt i det lägsta skiktet smälter snöflingorna och vi får regn. Även kall luft med minusgrader innehåller vattenånga, om än i liten mängd. Detta märks av om man vintertid ventilerar hus och verkstäder genom att släppa ut den fuktiga inomhusluften och ersätta den med frisk luft utifrån. Luften upplevs då som mycket torr och obehaglig.

mer material på avancerad nivå kommer

Vatten

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.

Vattnets ovanliga egenskaper

Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.

Vattnet är tyngst vid +4 °C.
Bild: © Svante Åberg

Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.

Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.

Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).

Vattnet är livsnödvändigt

Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.

När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.

Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.

Vattnet blev referens för temperaturskalan

Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.

När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K

Vätebindningar karaktäriserar vattenmolekylen

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.

Vätebindningarna ger hög ytspänning

Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.

Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.

Vinklad molekyl ger hexagonal struktur

I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats.
Bild: © Svante Åberg

Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.

Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.

Vattnets syra-basegenskaper

Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.

Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.

Ytspänning

Vattnets ytspänning är hög

Vatten är exempel på ett ämne med hög ytspänning. Det beror på att attraktionskrafterna mellan vattenmolekylerna är ovanligt stora. Vätebindningen mellan syret i en molekyl och väteatomen i en annan närliggande molekyl är nämligen stark.


Ytspänningen är en följd av att attraktionskrafterna i gränsskiktet är riktade inåt.
"Wasser in Tropfen und an der Phasengrenze" av Booyabazooka" (CC BY)

Ytspänningen visar sig i gränsskiktet

Attraktionskrafterna mellan molekylerna får vätskan att hålla samman. Inne i vätskan verkar attraktionskrafterna åt alla håll eftersom varje molekyl är omgiven på alla sidor av andra molekyler som den attraherar.

I gränsskiktet mellan vattnet och luften är bindningarna mycket svagare, så svaga att de oftast är försumbara. Luftens molekyler kan nämligen inte bilda de starka vätebindningarna. Dessutom är avståndet mellan luftmolekylerna stort, vilket innebär att vattnet inte kan binda till så många luftmolekyler. Bindningarna är dessutom mycket kortvariga. De existerar bara i ett mycket kort ögonblick då luftmolekylen kolliderar med vattenytan.

Det är skillnaden i energi mellan vattenmolekylerna i vätskeytan (högre energi) och molekylerna i vätskans inre (lägre energi) som är själva ytspänningen. Ytspänningen är alltså ett mått på den energi som krävs för att skapa fasgränsen mellan vätskan och gasen.


Ytspänning i en droppe.
Bild: Svante Åberg, Sofie Wallin

Ytspänning i en droppe

De röda pilarna visar krafterna som håller samman vattenmolekylerna i en droppe. Nettokraften (summan av krafterna) visas med blå pil.

I droppens inre verkar krafterna åt alla håll ungefär lika mycket. Krafterna tar därför ut varandra så att nettokraften blir nästan noll.

I vattenytan finns bara krafter som verkar i ytan och mot droppens inre. Nettokraften pekar därför mot droppens inre. Det verkar som om vattnet har en tunn hinna, ytspänning. Ytspänningen gör att droppen får en rund form.



Ytspänning i en plan vätskeyta.
Bild: Svante Åberg, Sofie Wallin

Ytspänning i en plan vätskeyta

Om vattenmängden är större flyter vattnet ut till en plan yta. Det beror på att vattnets tyngdkraft är större än ytspänningens sammanhållande krafter. Ytspänningen finns dock kvar som en tunn hinna på vattenytan. Det är den som gör att skräddare (insekter) kan springa på vattenytan utan att sjunka.

Energinivån är högre hos molekylerna i vätskeytan

Bindningsenergier sänker molekylernas energinivå. Det kan man förstå när man tänker på att det krävs arbete för att slita loss en molekyl från de andra molekylerna i vätskan. Eftersom molekylerna i vätskeytan binder färre grannmolekyler, så sänks deras energi inte lika mycket som molekylerna längre in. Molekylerna i ytan ligger på en högre energinivå. Det är denna energiskillnad som är ytspänningen. Ytspänning mäts i enheten energi per ytenhet (J/m2).

Men energi kan också mätas som det arbete som krävs att skapa vätskeytan. Till exempel krävs det arbete att blåsa upp en såpbubbla, även om det är lite. Om man tar bort munnen från blåsröret innan bubblan har lossnat, så drar såpbubblan ihop sig igen. Det finns alltså en spänning i vätskeytan. Ytspänningen kan därför också anges som kraft per sträcka (N/m), ungefär som den kraft som krävs att sträcka ett gummiband.

Kapillärkraft

Adhesion och kohesion

adhesion = attraktionskrafter mellan två material
kohesion = attraktionskrafter inom ett material

Attraktionskrafter mellan vätskans molekyler och kärlets väggar får vätskan att klättra uppför väggen. Attraktionskrafter mellan vätskans molekyler gör att vätskan håller ihop.
Bild: Svante Åberg

I en vattenfylld kapillär och även i ett vanligt dricksglas kan man se att vattenytan vid kanterna, nära glaset, är högre än mitten av röret/glaset. Det beror på att vattenmolekyler dras till molekylerna i glaset med elektrostatisk attraktion. Ytan av fasta material innehåller polära grupper som saknar partner att binda till. De vill gärna binda till en lämplig molekyl i närheten, t.ex. vatten. Attraktionen i gränsskiktet mellan två material kallas adhesion.

De sammanhållande krafterna inom ett material/ämne, t.ex. vatten, benämns kohesion. Eftersom kohesionskrafterna i vattnet är starka så håller vätskepelaren ihop när adhesionen drar vätskan uppför glasets kant.


I en smal kapillär stiger vätskan högre därför att vätskepelarens tyngd är mindre i förhållande till den kontaktyta som ger adhesion.
Bild: Svante Åberg

I en smal kapillär stiger vattnet högre

Om röret är väldigt smalt kan vattnet stiga högt eftersom vätskepelaren inte är lika tung. Adhesionkraften får vätskan att stiga till dess pelarens tyngd och adhesionskrafterna precis balanserar varandra. Ju större diametern är hos röret/glaset, desto mindre blir adhesionskraften i förhållande till gravitationskraften och ju kortare sträcka kan vattnet därmed stiga.

Praktiska exempel på kapillärkrafter

När du torkar diskbänken med en bit hushållspapper (eller duk), så sugs vattnet upp av papperet med kapillärkraft. Papperet är av cellulosa som innehåller många polära OH-grupper. Papperet är dessutom poröst. Kombinationen av porer och adhesion ger den uppsugande effekten.

Växterna transporterar vatten från rötterna upp genom stammen. Det sker med kapillärkraft genom de fina kanalerna i växterna. Dessa kanaler är också polära på insidan så att de attraherar vattenmolekylerna och ger en effektiv adhesion. Dessutom kan osmos i rotsystemet hjälpa till att öka vattentrycket i växten, vilket hjälper till ytterligare i vattentransporten upp genom växten.

Jord suger lätt åt sig vatten. Jorden är porös. Jordpartiklarna är mineraler, dvs. salter, som innehåller joner. Jonerna gör jorden polär, vilket ger adhesion till vattenmolekylerna som därför sugs in i de små porerna med kapillärkraft.

Ytspänningen avgör hur högt vattnet stiger - eller sjunker

Vanligast är att man har vattenlösningar. Vatten är ett starkt polärt ämne som lätt bildar vätebindningar. Glas har också polära grupper på sin yta. Därför finns en stark adhesion mellan vattnet och glaset. Det innebär att glas väts av vatten. Det medför att vattnet stiger högt i kapillären.

Glas kan behandlas så att det blir opolärt. Det är vanligt att glasögon behandlas på detta sätt. Om en glaskapillär är ytbehandlad invändigt för att bli opolär, så blir kapilläreffekten den omvända. Adhesionen mellan den behandlade glasytan och vattnet upphör nästa helt. När kapillären stoppas ned i vattnet sjunker i stället vattenytan i kapillären, och vattenytan blir lägre ju tunnare kapillären är.

Adhesionen mellan kvicksilver och glas är också försumbar, även om glasytan är polär. Det innebär att när en kapillär stoppas ned i kvicksilver, så sjunker kvicksilvret inne i kapillären - mer ju tunnare kapillären är.

Gore-Tex är ett textilt material som tillverkas genom att Teflon (polytetrafluoroetylen, PTFE) valsas och sträcks. Vid processen blir det till en membran som innehåller ett stort antal små porer. Teflon är extremt opolärt och därför hydrofobt (vattenskyende). Ytspänningen på teflon är väldigt låg. Vatten kan inte väta materialet. Därför kan vattendroppar som regnar på materialet tränga igenom hålen. Den omvända kapillärkraften hindrar vattendropparna att tränga genom porerna. Däremot är vattenmolekyer i gasform så små att de utan hinder passerar porerna. Därför kan vattenånga som avdunstar från huden passera ut genom plagget som innehåller Goretex, men regnvatten kan inte tränga in.

material på avancerad nivå kommer att läggas in här

Kontaktvinkel

Ytspänning uppstår i fasgränser

Ytspänning är en kraft som finns mellan två faser, t.ex. luft och vatten. Dessa krafter finns även inuti vätskan men där är de jämnt fördelade och drar lika mycket åt alla håll. Ytspänningen gör att det bildas droppar eftersom det inte finns några krafter som drar utåt utan bara inåt mitten. Detta fenomen märks inte bara på vattendroppar utan även då man fyller ett glas till brädden och då kan få vattnet att faktiskt gå lite över glaskanten.


Vätningen av underlaget beror på ytspänningen.
"Droplets of fluid on a surface" av MesserWoland" (CC BY-SA 3.0)

Ytspänningen hos underlaget avgör om dropparna flyter ut

Vilken tjocklek som vattendroppen får på underlaget beror på underlagets ytspänning. Opolära material med låg ytspänning ger tjocka droppar medan polära material med hög ytspänning ger tunna droppar.


Låg ytspänning hos den underlaget gör att dropparna inte flyter ut.
"Water beading on a surface" av Wars" (CC BY-SA 3.0)

Om en yta har låg ytspänning, så som en nyligen vaxad bil, så kommer vattendroppar som landar på bilen att inte väta ytan. Vattendropparnas inre sammanhållande krafter är större än attraktionen mellan vattnet och underlaget av vax. Dropparna hålls därför samman i droppar, vilket ger minsta möjliga yta i förhållande till volymen.

Om en yta har hög ytspänning, så som papper, så kommer attraktionen mellan papperet och vattnet att vara jämförbar med vattnets inre sammanhållande krafter. Det gör att vattnet flyter ut och väter underlaget.



Kontaktvinkeln är sådan att de krafter som orsakas av ytspänningarna balanseras.
"Contact angle and interphase-energy" av Joris Gillis~commonswiki" (CC BY)

Kontaktvinkeln är ett mått på ytspänningen

Kontaktvinkeln bestäms av de energier som är inblandade när materialet (S = solid), vätskan (L = liquid) och luften (G = gas) kommer i kontakt med varandra. De tre krafter som dessa energier (material-vätska, vätska-luft, luft-material) ger upphov till kan representeras av tre vektorer som precis balanserar varandra i riktningen utmed materialets yta: 0 = ΧSL - ΧSG - ΧLG cos(Θ).

Polaritet

I kemiska föreningar delas elektroner mellan atomerna som ingår i föreningen. Olika grundämnen har olika förmåga att attrahera elektronerna. Denna egenskap kallas elektronegativitet. Generellt sett har metaller låg elektronegativitet och ickemetaller hög elektronegativitet. Tittar man på ickemetallerna så är elektronegativiteten högst hos kväve (N), syre (O) och fluor (F). Lägst elektronegativitet, dvs. de mest elektropositiva grundämnena, finns i grupp 1 nedtill i periodiska systemet.

Polaritet hos molekylföreningar

Elektronegativitet förskjuter elektronmolnet i molekylen

Molekylföreningar är ämnen där ickemetaller har bundits till varandra. Bindningarna är kovalenta bindningar, så kallade elektronparbindningar. Elektronparen bildar elektronmoln som binder samman de två atomerna i bindningen. På grund av olika elektronegativitet hos de olika atomslagen, så förskjuts elektronmolnet mot det mer elektronegativa atomslaget. Om till exempel syre och väte bind till varandra, så är elektronmolnet förskjutet mot syre på grund av dess höga elektronegativitet.

I vätefluorid (HF) är fluor den mer elektronegativa atomen till höger.
CC Benjah-bmm27

Elektronerna är bara förskjutna i bindningen, men flyttar inte över helt och hållet. Men förskjutningen av elektronmolnet gör att en del av molekylen kan vara mer negativ. Eftersom den totala laddningen för en molekyl är noll, så finns motsvarande positiva laddning på den atom som har lägre elektronegativitet. Man säger att bindningen är polär.

Molekylen blir en dipol

Den polära bindningen kan göra att molekylen som helhet blir polär. En sådan molekyl kallas för dipol. Exempelvis är vätefluorid en dipol där fluoret har ett negativt laddningsöverskott (rött) och vätet ett positivt (blått).

Vatten är ett starkt polärt ämne på grund av syrets höga elektronegativitet.
CC

Ett annat exempel är vattenmolekylen där syret har ett negativt laddningsöverskott och vätena ett positivt. Här är det två bindningar till syret, en till vardera väteatomen. Den negativa laddningen på syret är därför summan av de positiva laddningarna på vätena. På grund av att den är vinklad är vattenmolekylen en dipol med den negativa änden vid syret och den positiva mitt emellan väteatomerna.


I koldioxid (CO2, O=C=O)är båda bindningarna mellan kolet i mitten och syret i änden polära, men motsatt riktade. Molekylen som helhet blir därför opolär.
CC
Symmetri kan släcka ut polariteten hos bindningarna

Koldioxid innehåller bindningar mellan kol och syre. Syreatomerna i var sin ända är mer elektronegativa än kolatomen i mitten. Bindningarna är alltså polära.

Koldioxid är en rak molekyl, till skillnad från vattenmolekylen. Dessutom är den polära bindningen mellan kol och syre i den ena änden motriktad motsvarande bindning i den andra änden. De motsatt riktade bindningarna släcker ut varandras polaritet, så att molekylen som helhet blir opolär, trots att de ingående bindningarna är polära.

Detta är exempel på att man måste känna till den tredimensionella strukturen hos en molekyl för att veta om den faktiskt är polär.

I kvävgas (N2) är båda atomerna lika elektronegativa. Bindningen mellan atomerna är därför opolär.
CC
En bindning mellan samma atomslag är opolär

Mellan olika atomslag finns det alltid en viss skillnad i elektronegativitet. Skillnaden kan vara stor eller liten, men inga atomslag av två olika grundämnen har exakt samma egenskaper. Däremot är två atomer av samma atomslag exakt likadana. Det betyder också att bindningen mellan dem är helt opolär. Exempel på sådan molekyl är kvävgas.


Förening mellan metall och ickemetall

I en kristall natriumklorid är den positiva Na+-jonen (lila) omgiven av negativa Cl-joner (grön) och vice versa.
CC Benjah-bmm27
Joner är alltid polära

I föreningar mellan metall och ickemetall är skillnaden i elektronegativitet så stor att en eller flera elektroner hoppat över helt och hållet från metallen till ickemetallen. Kvar blir då positiva metalljoner och negativa ickemetalljoner. Polär betyder ”laddad”. Det innebär att joner, som ju alltid har en laddning, alltid är polära.

Ett typiskt exempel på en jonförening är natriumklorid, dvs. vanligt koksalt. Saltkristallerna är uppbyggda av tätt sammanpackade positiva natriumjoner och negativa kloridjoner. Varannan jon är positiv och varannan negativ för att plus- och minusladdningar ska komma så nära varandra som möjligt. Positiv och negativa laddningar attraherar nämligen varandra.

Några föreningar mellan metall och ickemetall är gränsfall

Några metaller är inte så elektropositiva, dvs. deras elektronegativitet är inte så låg. De finns i periodiska systemen i gränsområdet mellan metaller och ickemetaller. Halvmetallerna är sådana, men även några som betecknas som metaller är ändå inte så elektropositiva.

Ett sådant exempel är silver (Ag). När silver och klorid reagerar till silverklorid (AgCl), så är skillnaden i elektronegativitet för liten för att det ska bildas joner. Men bindningen är ändå starkt polär. Därför är bindningen i silverklorid polär kovalent. Silverklorid är visserligen ett polärt ämne, men inte så starkt polärt. Lösligheten i vatten är därför dålig.

material på avancerad nivå kommer att läggas in här

Hydrofil och hydrofob

Det grekiska ordet fili betyder kärlek, vänskap och dragning till. Motsatsen i grekiskan är fobi, som betyder fruktan eller rädsla för. Även ordet hydro kommer från grekiskan och anger att något har med vatten att göra.

Inom kemin talar vi om hydrofila eller hydrofoba egenskaper hos molekylgrupper eller hela molekyler. Förklaringen till de hydrofila och hydrofoba egenskaperna ligger hos attraktionskrafterna mellan partiklarna i en vattenlösning, det vill säga de intermolekylära bindningarna.

Vatten är ett starkt polärt lösningsmedel

Vi utgår från att vårt lösningsmedel är vatten.

Mellan vattenmolekylerna finns starka vätebindningar. Vätebindningarna orsakas av ett positivt laddningsöverskott på väteatomen och ett negativt på syreatomen. Vätet i en vattenmolekyl attraheras därför av syret i en angränsande vattenmolekyl. Det är den starka polariteten i vätebindningarna som är kännetecknande för vattnets egenskaper.

Det finns andra lösningsmedel som har liknande egenskaper som vatten. Ett exempel är metanol (CH3OH), som också har en OH-grupp och kan vätebinda. Ett annat exempel är ättiksyra (CH3COOH), som även den har en OH-grupp som kan vätebinda. Vatten är dock i en särställning bland lösningsmedel vad gäller styrkan hos polariteten.

Förklaringen bakom "lika löser lika"

I vattenlösningen binder vattenmolekyler till varandra med sina vätebindningar. En lösning förutsätter att lösningsmedlet och det lösta ämnet blandas ända ner på molekylnivå. Det lösta ämnet och lösningsmedlet är i väldigt nära kontakt med varandra. För att detta ska vara möjligt måste bindningen mellan det lösta ämnet och vattnet vara så stark att den kan konkurrera med vätebindningen mellan vattenmolekyler.

Polärt ämne i polärt lösningsmedel

En förutsättning för en stark bindning mellan det lösta ämnet och vatten är att det lösta ämnet också är polärt, det vill säga har laddningar som kan attrahera vattenmolekylernas laddningar. Exempelvis kan metanol, med sin polära OH-grupp, vätebinda till vattenmolekyler. För vattenmolekylerna gör det därför inte så stor skillnad om de binder till en annan vattenmolekyl eller till en metanolmolekyl. Vatten och metanol kan blandas ända ner på molekylnivå.

Ett annat exempel på polärt ämne är koksalt. Polariteten finns inbyggd i saltets byggstenar, som ju är jonerna Na+ och Cl. Polariteten hos saltet gör att det löser sig i vatten.

Opolärt ämne i polärt lösningsmedel

Vatten och olja separerar i två faser eftersom vatten är polärt, men olja opolär.
Bild: Svante Åberg

Om det lösta ämnet är opolärt, eller bara är svagt polärt, så skapas ingen stark bindning till vatten. Vattnet binder bara till andra vattenmolekyler. Det betyder att allt vatten klumpar ihop sig till en fas.

Det ämne som skulle lösas blir över och bildar en egen fas. Det är inte så att molekylerna i det opolära ämnet attraheras till varandra. Tvärtom är bindningarna mellan de opolära molekylerna svaga. Men det är helt enkelt så att de blir över när vattenmolekylerna håller ihop.

Bildningen av faser bygger på att polära och opolära ämnen inte blandar sig med varandra. Sedan gör skillnaden i densitet att den ena fasen flyter upp och den andra sjunker. Om du försöker blanda vatten (polärt) med bensin (opolärt), så kommer den lättare bensinen att lägga sig som ett lager ovanpå vattnet. Bensinen utgör den ena fasen och vattnet den andra.

För att lättare förstå hur detta fungerar kan du tänka dig att du har en kulpåse med stenkulor och små runda magneter. Om du skakar på påsen ett tag, så kommer magneterna att klumpa ihop sig. Över blir stenkulorna, som ligger för sig själva. Magneterna motsvarar vattenmolekyler och stenkulorna opolära molekyler i denna liknelse.

Opolärt ämne i opolärt lösningsmedel

När lösningsmedlet är opolärt, som till exempel bensin, så finns inga starka bindningar mellan molekylerna i lösningsmedlet. Det gör det lätt för andra molekyler att konkurrera med bindningarna mellan lösningsmedelsmolekylerna. Till exempel kan opolära jodmolekyler lösa sig i bensin. Bindningen mellan jod och bensin är visserligen svag, men det gör inget eftersom bindningen mellan två bensinmolekyler också är svag. Det lösta ämnet och lösningsmedlet blandar sig ner på molekylnivå.

Detta exempel kan illustreras med en kulpåse där man har stenkulor och glaskulor. Även om det är olika sorters kulor, så blandas de med varandra om påsen skakas, eftersom inga kulor attraherar varandra.

Hydrofob effekt


Fosfolipider kan bilda olika strukturer som bygger på den hydrfoba effekten där den opolära delen av molekylen undviker kontakt med vattnet.
"Phospholipids aqueous solution structures" av Mariana Ruiz Villarreal, LadyofHats" Public Domain Mark

Hydrofob effekt är tendensen hos opolära ämnen att klumpa sig samman i vattenlösningar och utestänga vattenmolekyler.

Exempel är bildningen av cellmembran där fosfolipider vänder sin opolära (hydrofoba) ände in mot membranets mitt och den polära (hydrofila) delen ut mot vattenlösningen. Cellmembranet är ett bilager där dess inre hydrofoba del är gömd från kontakt med vattnet.

Ett annat exempel är hydrofoba områden på proteiner. Sådana områden har en förmåga att binda till sig opolära molekyler. Ofta är enzymers funktion kopplade till sådan hydrofob effekt hos den aktiva ytan på enzymet.

Veckningen av de långa aminosyrakedjorna till proteiner med en mycket bestämd form styrs till stor del av den hydrofoba effekten. Fel på en enda aminosyra i den långa sekvensen kan göra att proteinet inte får rätt form och därför inte fungerar som det ska i kroppen.

Den vanliga tvättmekanismen hos tvål, tvättmedel eller diskmedel är också ett resultat av den hydrofoba effekten. Fettpartiklar bakas in av de detergentmolekylerna vars opolära svansar löser sig i fettet med de polära huvudena pekande utåt mot vattenlösningen. Fettpartiklarna blir helt täckta av detergenten så att det liknar en ryamatta.

Termodynamik och hydrofob effekt

Inom termodynamiken finns två drivkrafter för kemiska förändringar. Det ena är strävan mot lägsta energi, det andra strävan mot högsta entropi.

Ett system går mot lägre energi när starka bindningar skapas. Exempel är vätebindningarna mellan vattenmolekylerna. Om bindningarna mellan vattenmolekylerna bryts, till exempel genom att andra molekyler lägger sig i vägen, så ökar systemets energi. Det krävs nämligen energi att sära på vattenmolekylerna. Detta går dock tvärtemot systemets tendens att minimera sin energi. Strävan mot minimering av energin gynnar den hydrofoba effekten.

Dock är det så att entropin, som kan beskrivas som graden av oordning, ökar när olika molekyler blandas. Den normala tendensen för system är att gå mot större oordning (högre entropi). Strävan mot ökad entropi motverkar därför den hydrofoba effekten.

Temperaturen är också en faktor som har betydelse. Ju varmare det är, desto häftigare är molekylrörelserna. Ju kraftigare molekylrörelserna är, desto större tendens är det att molekylerna ska blandas med varandra. Ökad temperatur medför därför minskad hydrofob effekt. Det går också att förklara med att när tillgången på energi är hög, så drivs systemet mot en högre energi.

Drivkraften bakom de kemiska reaktionerna kan sammanfattas med Gibbs energi, som också benämns fri entalpi:

ΔG = ΔH - T·ΔS, där

G = Gibbs energi (J)
H = entalpi (systemets inre energi + produkten p·V) (J)
S = entropi (J K–1)
T = absolut temperatur (K)
Δ anger en förändring av ...

Den spontana reaktionsriktningen är när ΔG < 0. Negativa värden på ΔH och positiva värden på ΔS garanterar spontan reaktionsriktning. Ökande temperatur T förstärker effekten av ΔS.

Litteratur

  1. "Get out and stay out", W.L.Gore & Associates, Inc.
  2. "Gore-Tex owners manual-sverige", W.L.Gore & Associates Scandinavia AB.
  3. "Gore-Tex footwear owners manual", W.L.Gore & Associates Scandinavia AB.
  4. Kundservice, Gore Scandinavia AB, Tel. 0200-213800.
  5. Gore-TexÒ, W. L. Gore & Associates,
    http://www.gorefabrics.com/ (2003-06-06)
  6. Gore-Tex: An Introduction to the Material and Treatments, The American Institute for Conservation of Historic and Artistic Works,
    http://aic.stanford.edu/conspec/bpg/annual/v11/bp11-33.html (2003-06-06)
  7. Polytetrafluoroethylene, Macrogalleria, University of Southern Mississippi,
    http://www.psrc.usm.edu/macrog/ptfe.htm (2003-06-06)
  8. Teflon, Rose-Hulman Institute of Technology,
    http://www.rose-hulman.edu/Class/cheme/HTML/SiteMap/Undergraduate/
    StudentProjects/MaterialsStudentProjects/teflon/teflon.htm (2003-06-06)
  9. PTFE Hydrophobic Membrane Filters, Small Pore Sizes, Koma Biotech,
    http://www.komabiotech.com/product/molecular/DiscMembrane/TefSep.htm (2003-06-06)

Fler experiment


aggregationsformer
Avdunstning och temperatur
Badbomber
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
En märklig planta
Ett glas luft
Exempelfil_Försvinnande bläck (Erik Lövbom)
Fryspunktsnedsättning
Förtenning
Gör ditt eget läppcerat
Gör ett avtryck från papper till stearin
Hockey-visir
Hur fungerar en torrboll?
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Kemi i en brustablett
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Lödtenn 60
Molnet i flaskan
Myggmedel - hur funkar det?
Osynlig gas
Platta yoghurtburkar
Popcorn
Salta isen
Saltat islyft
Slime
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Studsboll
Syrehalten i luft
Tillverka en parfym och gör doftande skraplotter
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenvulkan
Ägget i flaskan

fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

kemisk bindning
Att vara kemisk detektiv
Bestäm CMC för diskmedel
Blandningar av lösningsmedel
Diska med äggula
Ett målande experiment - att rengöra en målarpensel
Frigolit i aceton
Färga ullgarn med svampar
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör hårt vatten mjukt
Gör kopparslanten skinande ren - med komplexkemi
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Håller bubblan?
Kemisk vattenrening
Kristallvatten i kopparsulfat
Lödtenn 60
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
Permanenta håret
Slime
Studsboll
Såpbubblor
Tag bort rostfläcken med det ämne som gör rabarber sura
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Tillverka papperslim
Trolleri med vätskor
Tvätta i hårt vatten
Undersök en- och flervärda alkoholer
Varför färgas textiler olika?
Vattenrening
Visa ytspänning med kanel

kemisk struktur
DNA ur kiwi
Doft och stereoisomeri
Frigolit i aceton
Gummi och lösningsmedel
Gummibandets elasticitet
Hur kan man göra kläder av plast?
Kristallodling
Kristallvatten i kopparsulfat
Matoljans viskositet och omättade fettsyror
När 1 plus 1 inte är 2
Platta yoghurtburkar
Smältpunkten för legeringen lödtenn
Studsboll

vardagens kemi
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Bestäm CMC för diskmedel
Blev disken ren?
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Den omöjliga tvålen - den är preparerad!
Diska med äggula
Eld - varför brinner det?
Eldprovet
Enzymaktivitet i ananas
Enzymer i Tvättmedel
Ett gammalt tvättmedel, del 1: Salt ur björkaska
Ett gammalt tvättmedel, del 2: Tvål ur saltet
Ett målande experiment - att rengöra en målarpensel
Falu rödfärgspigment ur järnvitriol
Framställ en detergent
Framställ låglaktosmjölk
Fruktköttet får solbränna
Färga ullgarn med svampar
Färgämnen i M&M
Gör din egen limfärg
Gör din egen tandkräm
Gör ditt eget läppcerat
Gör hårt vatten mjukt
Göra lim av kasein
Hockey-visir
Hur fungerar en torrboll?
Hur gör man kakan porös?
Hur moget är äpplet?
Hur smakar salmiak?
Håller bubblan?
Karbidlampan
Kemi i en brustablett
Kemisk vattenrening
Majonnäs - en emulsion
Maskrosen som krullar sig
Modellmassa av mjölk
Myggmedel - hur funkar det?
Målarfärgens vattengenomsläpplighet
När flyter potatisen?
Olja som lösningsmedel
Optiska Vitmedel
Osmos i ett ägg
Osynlig gas
Pektin och marmeladkokning
Pelargonens färg
Permanenta håret
Pulversläckare
Rengöra silver
Rostbildning och rostskydd
Skär sig majonnäsen?
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Superabsorbenter i blöjor
Surt regn
Syror och baser i konsumentprodukter
Såpbubblor
Tillverka din egen deodorant
Tillverka din egen glidvalla
Tillverka din egen tvål, del 1: Själva tvålen
Tillverka din egen tvål, del 2: Parfymera och färga tvålen
Tillverka ditt eget läppstift
Tillverka Falu rödfärg enligt gammalt recept
Tillverka papperslim
Tillverka rengöringskräm
Tvätta i hårt vatten
Utfällning av aluminium
Utvinna järn ur järnberikade flingor
Vad händer då något brinner?
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Vad är skillnaden mellan maskin- och handdiskmedel?
Varför färgas textiler olika?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför rostar järn och hur kan man förhindra det?
Varför slipper bilen varma yllekläder på vintern?
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Vattenrening
Visa ytspänning med kanel
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Ägget i flaskan
Ärg på en kopparslant
Äta frusen potatis