Den tunga koldioxiden

Tillhör kategori: fysikalisk kemi, gaser, syror och baser, urval experiment under revidering

Författare: Svante Åberg   Medverkande: Mauritz Strandelin

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Tid för förberedelse: 10 minuter

Tid för genomförande: 20 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Utföres med normal varsamhet

Svårighetsgrad: Kräver viss labvana

Introduktion

Hur fungerar en kemisk brandsläckare?[1] I detta försök får du se hur koldioxid, som bildas vid reaktion med ättiksyra och natriumvätekarbonat, släcker elden hos ett ljus. Koldioxiden som har högre densitet tränger bort luften (syret) ur glasbägaren och förhindrar därmed tillgång av syre och ljuset kan inte brinna.

Ett tragiskt exempel på effekten av den tunga koldioxiden är katastrofen vid Nyossjön i Kamerun.

Riktlinjer

Detta experiment riktar sig i första hand till åk 7-9. Eleverna bör veta skillnaden på gaserna syre och koldioxid, t ex att syre behövs för förbränning och koldioxid kan förhindra förbränning. Det är ett lämpligt elevförsök i par. Försöket kan även utföras som en lärardemonstration.

Säkerhet

Skyddsutrustning är skyddsrock och eventuellt glasögon. Experimentet behöver inte utföras i dragskåp.

Efter experimentet rengörs använda föremål med vatten och restprodukterna hälls ut i vasken. Inga farliga kemikalier ingår i försöket.

Materiel

Varje grupp ska ha:

Förarbete

En genomgång av säkerföreskrifter vid brand, hur man går till väga om olyckan är framme.

Se till att ha brandsläckningsmöjligheter. Kontrollera nödutgångar. Köp in de livsmedel och andra konsumentprodukter som behövs dessa finns hos livsmedelsaffären.

Utförande

  1. Fäst ett ljus på botten (insidan) av en 100 ml bägare eller vidhalsad kolv.
    Det kan göras genom att droppa varmt stearin på botten av bägaren eller kolven och sätta ljuset på det varma stearinet och låt stelna. Du kanske vill sätta ljuset på en bit kartong i stället för att fästa det direkt på bägaren eller kolven - på så sätt behöver du inte tänka på att göra ren, bägaren eller kolven från stearin. Eller så kan man använda sand, ris eller strösocker att sätta fast ljuset med.
  2. Tänd ljusstumpen i glasbägaren/kolven.
  3. I en annan glasbägare häller du en tesked natriumbikarbonat och över det lite (ca ½ tsk) ättiksyra så att det skummar.
  4. Placera en bit kartong löst ovanpå bägaren med ljusstumpen för att minska uppblandningen med luft.
  5. Prova att luta denna andra glasbägare över glasbägaren med den brinnande ljusstumpen och se vad som händer!
  6. Tänd ljuset.
  7. Vänd bägaren uppochned för att avlägsna koldioxiden från bägaren.
  8. Ställ bägaren rättvänd och tänd ljuset på nytt.

Variation

Olika höga ljus

Använd flera ljus, olika höga, 2,3 och 4 cm, då kan man se när lågorna släcks efter hand. Då behövs större mängd av bikarbonat och ättiksyra (ren ättika), prövas dig fram till den rätta proportionen.

Andra material innehållande karbonat

Det går också att istället för bikarbonat använda, äggskal, kalksten, marmor, äggskal, mussla, snigelskal, ostronskal eller krita, alla dessa innehåller kalciumkarbonat, CaCO3, som tillsammans med syra bildar bl.a. koldioxid CO2 [2]. För att få fart på reaktionen kan en stark syra behövas, t ex saltsyra. Om du använder saltsyra (HCl) måste du ha glasögon och förkläde.

Värm kalciumkarbonat för att producera koldioxid

Det går också att värma kalciumkarbonatet som då bildar bl.a. koldioxid [3].
CaCO3(s) + värme CO2(g) + CaO(s)
kalciumoxid koldioxid kalciumoxid

Alternativ burk

Många tabletter, t ex vitamintabletter, säljes i burkar med plastlock som man trycker fast. Skaffa en sådan burk som rymmer ½-1 dl. Gör ett litet hål mitt i locket och stick i en ventilgummislang, minst 25 cm lång. Sätt litet kontorslim i skarven så att det blir alldeles tätt. När du hällt i ingredienserna i medicinburken så sätt snabbt på locket. Du har just tillverkat en brandsläckare!

Alla syror tillsammans med karbonat ger koldioxid, vatten och salter.

Förklaring

Koldioxidens densitet är högre än luftens. (Molekylmassan för syre O2 är 2·16 u = 32 u (unit) eftersom atommassan [4] för syre är 16 u. Molekylmassan för koldioxid är 2·16 + 12 u = 44 u [5]).

Det är därför CO2 rinner till botten av en bägare fylld med luft genom att tränga undan luften (syregas och kvävgas), upp och ur glasbägaren med ljuset, det vill säga det syre som är nödvändigt för förbränningen. Denna egenskap gör det lätt att fylla en behållare med koldioxid och hälla koldioxid från en behållare till en annan.

Koldioxiden kan inte brinna och därför kvävs elden. Det utsprutande skummet består av blåsor som är fyllda med koldioxid. Dessa omger lågan och avstänger syretillförseln.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Gaspartiklar

Värmerörelsen är ett mått på rörelseenergin

Partiklarna i en gas rör sig med hög hastighet. Hastigheten bestäms av temperaturen. Värme är en form av energi. Det innebär att vid en viss temperatur har gaserna ett bestämt energiinnehåll i form av rörelseenergi.

Alla gaser har samma rörelseenergi

Ju högre temperaturen är, desto högre är gaspartiklarnas hastighet. Vid en bestämd temperatur är gaspartiklarnas rörelseenergi densamma oberoende av vilket sorts gaspartikel det handlar om. I luften finns kvävemolekyler (N2), syremolekyler (O2), vattenmolekyler (H2O), koldioxidmolekyler (CO2) och en liten mängd ädelgaser som är enatomiga partiklar. Alla dessa har alltså samma genomsnittliga rörelseenergi. Rörelseenergin beräknas med formeln ½mv2 (m = massan, v = hastigheten). Molekyler som är tyngre rör sig långsammare och de lättare molekylerna och atomerna snabbare. Det sker på så sätt att produkten ½mv2, dvs. rörelseenergin, blir densamma i genomsnitt.

Antalet gaspartiklar är detsamma oberoende av vilken sort

Gaspartiklarna kolliderar med föremål i närheten, vilket orsakar ett tryck mot kollisionsytan. Samma antal gasmolekyler ger samma tryck oberoende av vilken sorts gaspartikel det handlar om. Det här innebär att vid ett visst tryck så finns det alltid lika många gaspartiklar i en given volym vare sig det är syrgasmolekyler, kvävgasmolekyler eller koldioxidmolekyler. Man har beräknat och även visat experimentellt att vid rumstemperatur och normalt tryck ryms det en mol gaspartiklar i 24 dm3.

Lätt att beräkna gasernas densitet

Detta gör att det blir lätt att jämföra gasers vikt för en given volym. Vikt per volymsenhet benämns densitet. Vi kan räkna på de vanliga gaserna i luften:
Syrgas (O2) har molvikten 2·16 g/mol = 32 g/mol ⇒ 28g/24 dm3 = 1,33 g/dm3
Kvävgas (N2) har molvikten 2·14 g/mol = 28 g/mol ⇒ 32g/24 dm3 = 1,17 g/dm3
Koldioxid (CO2) har molvikten (12+2·16) g/mol = 44 g/mol ⇒ 44g/24 dm3 = 1,83 g/dm3.

Koldioxiden sjunker i luft

Luft innehåller i stora drag 20% syrgas och 80% kvävgas. Det ger en genomsnittlig densitet på (0,2·1,33 + 0,8·1,17) g/dm3 = 1,20 g/dm3. Jämför detta med koldioxidens 1,83 g/dm3 och du förstår varför koldioxiden sjunker om den hälls ut i luften.

Koldioxid

Koldioxid I en molekyl koldioxid ingår atomer av två olika grundämnen, kol och syre. Kolatomer och syreatomer har förenat sig på ett regelbundet sätt - alla CO2-molekyler är likadant byggda. Man kallar ett kemisk ämne som är byggt på detta sätt för en kemisk förening.

Blanda inte ihop gasen koldioxid (CO2) med kolmonoxid (CO) som är mycket giftig och som bildas vid ofullständig förbränning av kolhaltiga ämnen.

Reaktionsformler

I experimentet bildas koldioxiden genom reaktion mellan ättikan (ättiksyra-lösning) och bakpulvret (natriumbikarbonat, natriumvätekarbonat). Reaktionsformeln är

NaHCO3(s)  + CH3COOH(aq)    CO2(g)  + H2O  + Na+  + CH3COO-(aq)
natrium-
bikarbonat
ättiksyra koldioxid vatten natriumjon acetatjon

Reaktionsformeln för bildande av koldioxid är en syra-bas reaktion. Vid reaktionen avger syran en vätejon (proton) till basen. Definitionen av en syra är "ett ämne, eller en jon, som kan avge vätejoner". På motsvarande sätt definieras en bas som "ett ämne, eller en jon, som kan ta emot vätejoner" [8].

Reagens

Karbonat och vätekarbonat är salter av kolsyran. Alla ämnen som heter "något" och som slutar på "karbonat" avger koldioxid när de kommer i kontakt med syra. Därför kan man använda syra som reagens på karbonat. Det fungerar både på lösningar som innehåller karbonat, t ex löst bakpulver, och på fasta ämnen som är karbonater, t ex kalksten. Geologer brukar däför testa mineralerna med syra för att se om det är ett karbonat.

Om gasen CO2 leds ner i en klar lösning av kalkvatten, CaOH2(aq), blir kalkvattnet grumligt. Det är ett bra sätt att känna igen koldioxid. Man brukar säga att kalkvatten är reagens på koldioxid. Fällningen uppstår därför att koldioxiden reagerar med kalciumhydroxiden och bildar svårlösligt kalciumkarbonat.

CO2(g) + Ca(OH)2(aq) → CaCO3(s) + H2O(l)

Kemikalien natriumvätekarbonat finns i alla hem under namnet "bikarbonat". Natriumbikarbonat ingår också i vanligt bakpulver. Ättiksyran hittar du också hemma. Ättiksyra används för att lägga in t ex gurkor i lag.

Brandsläckning

Genom att ta bort syret från luften kväver man elden. Försöket med att kväva ett ljus med en kemisk reaktion mellan natriumbikarbonat och ättiksyra är ett exempel på detta. Syran i ättikan reagerar med natriumbikarbonat och koldioxid bildas och fyller kärlet och tränger undan syret. Detta p.g.a. att koldioxid är tyngre än syre.

Eld är en förbränningsreaktion (kemisk reaktion) där en av förutsättningarna för att eld ska kunna brinna är bl.a. syre.

Nyossjön i Kamerun

En mänsklig katastrof

I augusti 1986 briserade en gasbomb i västafrikanska staten Kamerun vilket ledde till att ca 1700 människor omkom. Praktiskt taget allt levande i området utplånades inom ett avstånd av 15 km från sjön Nyos. Det var som om en Ramlösa som öppnades för snabbt. Det dödliga gasmolnet bestod huvudsakligen av koldioxid, CO2. Denna gas är inte giftig, men den är så tung att den i stora mängder kan undantränga den vanliga atmosfäriska luften och därigenom, blir den kvävande.

Enorma mängder koldioxid i vattnet

Det strider emellertid mot all vedertagen kunskap att en sjö kan avge så stora mängder koldioxid. Nyossjöns form och läge kan vara nyckeln till gåtan. Sjön är bara två kilometer bred men hela 200 meter djup och den ligger väl skyddad bakom djupa kraterväggar. Dess stora djup kan vara en av orsakerna. Vatten kan ta upp betydliga mängder gaser, när det är under tryck och vid Nyossjöns botten är trycket 20 atmosfärer (1 atm är normalt lufttryck vid jordytan). Förekomsten av koldioxid är heller inte oförklarlig. Det är vanligt att gamla vulkaner avger gas mycket långt efter att den ursprungliga vulkaniska aktiviteten har upphört. Men koldioxiden kommer i så fall att bindas i karbonatform och som kommer att läcka ut ganska länge. I Nyossjön avgavs koldioxiden på samma plötsliga sätt, som när man tar en Ramlösa, skakar den ordentligt och öppnar den hastigt.

En händelse av gigantiska mått

Vågorna hade sköljt över en 75 meter hög udde söder om sjön, och 25 meter höga vågor hade rullat in över andra delar av stranden. Nyossjön förlorade under gasutbrottet 200 000 ton vatten och de brittiska forskare anser att gaserna burits av finpulvriserade vattendroppar.

Växthuseffekten

Vad växthuseffekten kan leda till

Den pågående ökningen av jordens medeltemperatur brukar kallas för växthuseffekten. Växthusgaserna hindrar solstrålarna att stråla tillbaka ut i rymden (samma effekt som ett växthus), värmen sprids runt jorden. Vad händer? Sker väderleksförändringar? Följande kan ske:

Balansen mellan in- och utstrålning

Jordens medeltemperatur är +15 °C. Utan växthuseffekten skulle medeltemperaturen vara c:a 30 °C lägre. Att vatten (H2O) kan förekomma i olika former är av grundläggande betydelse för många processer på jorden. Naturen beräknas klara av 1 °C, höjning/århundrade, idag är höjningen c:a 3 °C. Många djur och växter klarar inte snabba klimatförändringar. Arterna har ju anpassat sig till och är beroende av de temperaturer, årstidsväxlingar och regnmängder som råder idag.

Klimatet kontrolleras av den energi som flödar till och från jorden genom strålning. Solens kortvågiga strålning tas upp av jorden, samtidigt som jorden sänder ut långvågig strålning för att få balans i klimatet. En del av strålningen som "ska" ut i rymden absorberas istället av växthusgaserna och det blir varmare på jorden. Varje gas absorberar vissa våglängder.

Vad kan en ökad marktemperatur leda till?

Sker ökad nedbrytning? Ökar koldioxidhalten? Ökar näringshalten i marken? Ökar växtligheten?

Växterna tar upp mer koldioxid (CO2). En temperaturökning leder till en ökad lövyta som gör att solens strålar inte når marken och det blir kallare. Det leder till minskat koldioxidutsläpp.

Växthusgaserna

De gaser som bidrar till växthuseffekten är

Växthuseffekten orsakas av en grupp gaser av vilka de viktigaste är vattenånga, koldioxid, metan, dikväveoxid, ozon och freoner. De går under den gemensamma beteckningen "växthusgaser", eftersom de påverkar jordens värmebalans med rymden och ger upphov till den sk växthuseffekten. Halterna av samtliga gaser (utom ozon i stratosfären) ökar i atmosfären, och farhågor finns att vi därigenom kan komma att få ett varmare klimat fram på 2000-talet. Detta kan medföra en ändring av klimatzonernas fördelning och förutsättningarna för skogs- och jordbruket. Det är dock svårt att förutse exakt vilka regionala förändringar som är att vänta.

De förändringar av jordens värmebalans, som vi tror människan förorsakar, beror till omkring hälften på de ökade mängderna koldioxid i luften. Framför allt är det en växande förbrukning av fossila bränslen, som gett den dramatiska ökningen under 1900-talets senare hälft.

Gasernas löslighet

Gaser är mer eller mindre lösliga i vatten. Gasers löslighet minskar med ökande temperatur. Öppnar man en läskflaska som stått ute i solen får man ett bra exempel på temperaturens betydelse för gasers löslighet. När en sjö värms upp på sommaren sjunker syrehalten ibland så lågt att fiskarna dör. När ytvattnet i sjöar och hav kyls på hösten ökar dess förmåga att lösa syre. Det kalla ytvattnet är också tyngre och sjunker. Det varmare vattnet stiger och syresätts.

Gasers löslighet ökar med gasens tryck ovanför vattnet. I flaskor med kolsyrad läsk är det övertryck. Öppnar man kapsylen bubblar en del av koldioxiden bort.

Fördjupning

Gas

Gaser har speciella egenskaper som skiljer dem från vätskor och fasta ämnen. I en gas är avståndet mellan partiklarna mycket större än i en vätska. Avståndet är så stort att det inte finns några intermolekylära krafter som håller ihop partiklarna. De rör sig med stor hastighet, oordnat och fritt från varandra.

Gastryck av molekylernas kollisioner

En molekyl är väldigt liten, men det finns väldigt många! Varje gång en molekyl stöter emot ytan, på en burk t ex, så ger den en liten rekyl som tenderar att stöta bort föremålet. Alla molekylernas stötar ger tillsammans ett tryck som är större än man normalt föreställer sig. Vid normalt lufttryck är kraften 1000 N per dm2. Det motsvarar tyngden av 100 kg på varje kvadratdecimeter eller tyngden av 10 ton på varje kvadratmeter!

Att inte burkar, människor, fotbollar med mera trycks ihop av de väldiga krafterna beror på att det finns ett mottryck inifrån som är lika stort.

I figuren nedan ser man att det är fler molekyler som kolliderar med väggen på vänster sida än på höger. Gastrycket är alltså högre på vänster sida om väggen.

Gastrycket orsakas av molekylernas många små stötar. Gastrycket till vänster om väggen är högre därför att det är fler kollisioner.
Bild: © Svante Åberg

Kollisionerna på ömse sidor om väggen är ungefär lika kraftiga, vilket betyder att partiklarna rör sig ungefär lika fort. Man kan alltså dra slutsatsen att temperaturen är densamma på båda sidor om väggen.

Temperatur, kärlets volym och substansmängden påverkar trycket

Partiklarna kolliderar med varandra och med det omgivande kärlet. Det utgör gasens tryck. Trycket hos en gas beror på flera saker:

Alltså, trycket är proportionellt mot absolut temperatur och substansmängd och omvänt proportionellt mot volymen. Detta kan sammanfattas i Allmänna gaslagen.

Allmänna gaslagen:
pV = nRT
p = tryck, Pa
V = volym, m3
n = substansmängd, mol
T = temperatur, Kelvin
R = proportionalitetskonstant = 8,3145 J K-1 mol-1

Molvolym

Gasmolekylernas sammanlagda volym är väldigt liten i förhållande till gasens totala volym. Detta gör att en viss substansmängd av i stort sett alla gaser har samma volym vid samma tryck och temperatur. Gaserna har samma molvolym, och vid standardtryck och standardtemperatur (STP: p = 1 atm = 101,325 kPa = 1,01325 bar, T = 25 °C = 298,15 K) är molvolymen 24,47 dm3/mol.

Gasens densitet

Enklast är att räkna på en mol av gasen. Till exempel väger en mol koldioxid (CO2) 12,0 g + 2·16.0 g = 44,0 g. Vid standardtemperatur och tryck (se ovan) är molvolymen 24,47 dm3. Då är densiteten 44,0 g/24,47 dm3 = 1.80 g/dm3.

Luft består till ungefär 20% av syrgas (O2) och 80% kvävgas (N2). En mol syrgas väger 2·16.0 g = 32.0 g. En mol kvävgas väger 2·14.0 g = 28.0 g. En mol luft innehåller 0,20 mol syre och 0,80 mol kväve. En mol luft väger då 0,20·32,0 g + 0,80·28,0 g = 28,8 g. Vikten genom molvolymen blir då 28,8 g/24,47 dm3 = 1.18 g/dm3.

Dessa två beräkningar visar att koldioxid är tyngre än luft. Därför sjunker koldioxid till marken när den släpps ut i luften.

En motsvarande beräkning av densiteten för vattenånga (H2O) ger densiteten 18,0 g/24,47 dm3 = 0,73 g/dm3. Man kan alltså se att vattenångan är mycket lättare än luften. Därför stiger vattenånga som avdunstar från marken och vattendragen uppåt i osynliga bubblor av ånga. När vattenångan kommit tillräckligt högt är temperaturen så låg att den kondenserar till vattendroppar och blir synlig i form av moln.

Gaspartiklarnas rörelseenergi

Gaspartiklarna rör sig slumpmässigt, men i genomsnitt har de en rörelseenergi som motsvarar temperaturen. Ju högre temperaturen är, desto snabbare rör sig partiklarna. Temperaturen är därför ett mått på gaspartiklarnas rörelseenergi.

När man har en blandning av gaspartiklar som väger olika mycket, så får olika tunga partiklar ändå samma genomsnittliga rörelseenergi. Det innebär att tunga gaspartiklar rör sig långsammare än lätta gaspartiklar, annars skulle inte rörelseenergierna vara lika.

Till exempel rör sig vätemolekyler (H2) med molekylmassan 2 u 3.74 gånger snabbare än kvävemolekyler (N2) med molekylmassan 28 u. Man skulle kunna tro att vätet skulle röra sig 14 gånger snabbare eftersom kvävet är 14 gånger tyngre, men rörelseenergin är proportionell mot kvadraten på hastigheten. Därför blir kvoten mellan hastigheterna √ 28/2 = √ 14 = 3.74.

Koldioxid

Egenskaper

Koldioxid är en luktlös gas, men vid höga koncentrationer kan man få en sur smak i munnen som beror på att gasen löser sig i saliven och bildar kolsyra. Inandning av koldioxid i onormalt höga halter kan leda till huvudvärk, illamående och kräkningar. Är halten tillräckligt hög kan inandning leda till medvetslöshet och till och med döden.

Koldioxiden är med sin molmassa 44 g/mol tyngre än syrgas (32 g/mol) och kvävgas (28 g/mol). Därför sjunker koldioxiden ner mot marken om den släpps ut. Med tiden diffunderar koldioxiden och blandar sig med luften till dess halten är lika överallt, men det tar ett tag.

Koldioxid underhåller inte förbränning. Den kväver därför eld. Så kallade kolsyresläckare innehåller koldioxid under högt tryck. De fungerar genom att koldioxiden tränger undan luftens syre så att elden slocknar.

Kolsyresnö och torris är koldioxidid fast form

Kolsyresnö och torris är en benämning på frusen koldioxid. Torris är kolsyresnö som har komprimerats så att den blivit kompakt.

En bit torris ångar och ryker i rumstemperatur när koldioxiden sublimerar, dvs. övergår direkt från fast till gasform. Kylan gör att luftens fuktighet kondenserar så att synlig dimma bildas.

Man kan lägga ner bitar av torris i bål (som man dricker) för att få en festligt effekt. Torrisen kolsyresätter samtidigt drycken. Var bara försiktig att så att du inte sätter en bit torris i halsen. Den är nämligen mycket kall, - 78,5 °C. Tag aldrig i torris med händerna!

Ett recept för att tillverka dimma är att släppa ned torris i varmt vatten. Vattnet får torrisen att sublimera till gas snabbare, men bildas dimma av vattendroppar.

Kolsyresnö bildas också när man använder en kolsyresläckare. Brandsläckaren innehåller komprimerad koldioxid under högt tryck. När man släpper ut gasen sjunker temperaturen hastigt och så mycket att koldioxiden fryser till kolsyresnö vid –78,5 °C. Förutom att koldioxiden kväver elden så bidrar kyleffekten till att elden minskar i intensitet.

Tillverkning och användning

Koldioxid fås bland annat som biprodukt vid förbränning av kolhaltiga bränslen och vid upphettning av naturliga karbonat, särskilt vid "kalkbränning" (upphettning av kalciumkarbonat, kalksten). Kalkbränningen ger bränd kalk, (kalciumoxid, CaO):

CaCO3(aq) CaO(s) + CO2(g)
kalciumkarbonat kalciumoxid koldioxid

Den bildade koldioxiden renas och kondenseras, och kan också överföras till kolsyresnö som i sin tur kan pressas till torris.

Gasformig koldioxid används vid framställning av kolsyrade drycker och eldsläckningsanläggningar, medan torris främst används till kylning, till exempel när glass ska transporteras.

En mycket speciell tillämpning är koldioxidlasrar där koldioxiden fungerar som medium för ljusstrålen när den fås att svänga i fas. Koldioxidlasern producerar ljus i det infraröda området vid våglängderna 9,4 och 10,6 mikrometer (μm)

Ett oorganiskt ämne med stor biologisk betydelse

Koldioxiden ingår i kolets kretslopp i naturen. Alla organismer som förbrukar syre i cellandningen producerar koldioxid. Människan andas, liksom djuren, in luftens syre som transporteras ut i kroppen via blodet till cellerna där förbränningen av maten sker. Maten bryts ned till bland annat koldioxid och vatten. Blodet transporterar koldioxiden tillbaka till lungorna och vi andas sedan ut den.

C-föreningar + O2(g) H2O + CO2(g) + energi
kolföreningar syrgas vatten koldioxid energi

I växterna sker den motsatta processen, att bladen tar upp koldioxid som med hjälp av energin från solljuset reagerar med vatten. Då bildas bland annat sockerarter. Restprodukt vid fotosyntesen är syrgas som avges via bladens klyvöppningar.

H2O + CO2(g) + energi C-föreningar + O2(g)
vatten koldioxid energi kolföreningar syrgas

På detta sätt vandrar kolet i ett kretslopp mellan växter och djur. Kolet är i form av koldioxid när det finns i luften. Men i organismerna binds kolet upp i organiska föreningar såsom stärkelse, socker, fetter och proteiner. Koldioxid betecknas som ett oorganiskt ämne, dvs. ett ämne som inte är biologiskt. Men kolet från koldioxiden som binds i organiska föreningar som har en biologisk funktion.

Ökande koldioxidhalter i atmosfären försurar haven

Genom industrialiseringen, och då speciellt förbränningen av fossila bränslen, har sura gaser bidragit till försurning. Speciellt koldioxiden har blivit ett problem. Den naturliga mängden kol i kolets kretslopp har fyllts på med kol från de fossila bränslena som har legat i tryggt förvar i jorden. Koldioxidhalten i atmosfären har ökat dramatiskt.

Försurningen sker när koldioxid som löser sig i vattnet bildar kolsyra. Kolsyra får kalken i korallrev och i djur med kalkskelett att lösas upp. Effekterna är så stora att hela ekosystem är på väg att slås ut.

Ökande koldioxidhalter i atmosfären orsakar global uppvärmning

Eftersom koldioxid är en så kallad växthusgas, så orsakar ökningen av koldioxid i atmosfären en förstärkt växthuseffekt. Beräkningar växthuseffekten måste ta hänsyn till många komplicerade samband. Därför har forskarna av ren försiktighet undvikt att komma med kategoriska påstående om hur kraftig effekten är. Men när nu växthuseffekten har slagit till på allvar kan vi se att den är långt kraftigare än förväntat. Det finns inte heller någon tvekan om att den globala uppvärmningen till allra största delen är orsakad av människans verksamhet som ökat på koldioxidhalten i atmosfären.

Koldioxid i form av vätekarbonat stabiliserar pH

Medan koldioxiden transporteras av blodet reagerar det med vattnet som finns i blodet och bildar kolsyra, vätekarbonat och karbonat. Nästan all koldioxid är i form av vätekarbonat i blodet. Det beror på att blodets pH ligger på cirka 7,4. Vätekarbonatet hjälper till att stabilisera blodets pH så att det inte ska variera alltför mycket. Detta är viktigt för att vi ska må bra. Kroppens reglering och vätekarbonatets pH-buffrande verkan gör att blodet pH håller sig mellan 7,35 och 7,45.

Koldioxiden har också en motsvarande bufferteffekt på pH i naturen. Ett problem är dock att i första reaktionsstegen när koldioxiden reagerar med vatten, så bildas kolsyra. Kolsyran sänker pH. Det är först när en del av kolsyran förbrukas av bas, till exempel i reaktionen med kalk, som det pH-buffrande vätekarbonatet bildas. Ökande koldioxidhalter i luften bidrar därför till försurning av hav och vattendrag.

Koldioxid deponerad som mineraler

På planeterna Venus och Mars är koldioxid den vanligaste gasen. I torr luft på planeten Jorden är koldioxid den fjärde vanligaste gasen näst efter kväve, syre och argon. När de stora oceanerna bildades flyttades en stor del av koldioxiden från den tidiga atmosfären till vattnet där den löstes upp. Nu återfinns stora delar av den tidigare koldioxiden som karbonater i berggrunden.

Av allt kol som finns på jorden är bara en mycket liten del som fri koldioxidgas i atmosfären. Koldioxiden i luften står i jämvikt med koldioxid i vattenlösning. Koldioxiden i vattnet reagerar till kolsyra som reagerar vidare till vätekarbonat (HCO3) och karbonat (CO32–). Karbonatjonerna bildar svårlösliga salter tillsammans med till exempel kalciumjoner (Ca2+) och faller ut som fasta mineraler. Det mesta kolet är bundet i berggrunden som karbonater, men också som en försvinnande liten andel fossil stenkol, brunkol, olja och naturgas. Dessutom har vi kol som är bundet som biomassa i ekosystemen, inklusive förmultnande material i marken.

Fördelningen är följande:

PlaceringVikt kolAndel
atmosfären7,5·1011 ton0.001%
ekosystem2,1·1012 ton0.002%
haven3,8·1013 ton0.038%
berggrunden1,0·1017 ton99.959%

Koldioxid som superkritisk vätska

Vid tillräckligt högt tryck och temperatur övergår gaser till att bli superkritiska vätskor. Tillståndet är något som kan betecknas både som gas och vätska samtidigt. Molekylerna är rörliga nästan som i en gas, dvs diffunderar snabbt. Samtidigt är förmågan att lösa ämnen god, som i en vätska. Dessa egenskaper är till god nytta vid superkritisk extraktion. För koldioxid inträffar det superkritiska tillståndet vid 73,76 bars tryck och en temperatur av endast 31,04 °C. Det gör koldioxiden mycket lämpad för användning som superkritisk vätska.

Koldioxid-karbonatsystemet

Koldioxid tillsammans med vatten ingår i en serie former av kolsyra och karbonater som står i jämvikt med varandra. Förutom koldioxid och vatten som bildar kolsyra finns också syra-basjämvikterna mellan kolsyran och dess salter. Vi har följande:

CO2(g) CO2(aq) löslighetsjämvikt
CO2(g) + H2O(l) H2CO3(aq) jämvikt för bildning av kolsyra
H2CO3(aq) HCO3 + H+ syra-basjämvikt
HCO3 CO32– + H+ syra-basjämvikt

Den första jämvikten är en löslighetsjämvikt där koldioxidgas löser sig i vatten. Den andra jämvikten är en reaktion mellan koldioxid och vatten som bildar kolsyra. Den tredje och fjärde jämvikten är syra-basjämvikter där vätejoner ingår.

Alla dessa jämvikter är kopplade. Det innebär att en förändring i halten koldioxid i atmosfären fortplantar sig genom hela systemet så att till exempel halterna vätekarbonat och karbonat också påverkas.

Men eftersom vätejonerna också ingår i jämvikterna, så påverkas koldioxid-karbonatsystemet av sura och basiska ämnen i lösningen. pH är därför en viktig faktor.

Beräkningsexempel på koldioxid i jämvikt med vatten

Vi ska göra beräkningar på jämvikten mellan koldioxid i luften och kolsyra och karbonater i vatten. Värdena gäller för sötvatten vid rumstemperatur. Det är viktigt att känna till att jämviktskonstanterna är starkt beroende av temperatur och salthalt. Därför blir värdena annorlunda om man ska räkna på havsvatten eller kallare vatten.

Jämvikten mellan koldioxid i luften och i vattnet

Henrys lag tillämpad på koldioxid lyder KH = PCO2/[CO2(aq)] = 29,41 atm/(mol dm–3)

Koldioxidhalten 0,0387 % i luften vid 1 atmosfär ger PCO2 = 3,87·10-4 atm

Koncentrationen löst koldioxid i vattnet är då [CO2(aq)] = PCO2/K = 3,87·10-4 atm / (29,41 atm/(mol dm–3)) = 1,316·10-5 mol dm–3 ≈ 1,3·10-5 mol dm–3

Jämvikten mellan löst koldioxid i vattnet och kolsyra

Jämviktskonstanten för bildningen av kolsyra är K = [H2CO3(aq)]/[CO2(aq)] = 1,3·10-3

Halten kolsyra blir då [H2CO3(aq)] = [CO2(aq)] · 1,3·10-3 = 1,316·10-5 mol dm–3 · 1,3·10-3 = 1,711·10-8 mol dm–3 ≈ 1,7·10-8 mol dm–3

Första protolyssteget av kolsyran

Jämviktskonstanten för bildningen av vätekarbonat ur kolsyran är KA1 = [H+][HCO3]/[H2CO3(aq)] = 2,00·10-4 mol dm–3

Halten vätekarbonat blir då [HCO3] = 2,00·10-4 mol dm–3 · [H2CO3(aq)] / [H+]) = 2,00·10-4 mol dm–3 · 1,711·10-8 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / [H+]

Antag att pH är 8,14, vilket innebär [H+] = 10-8.14 mol dm–3

Vi får [HCO3] = 3,421·10-12 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / (10-8.14 mol dm–3) = 4,723·10-4 mol dm–3 ≈ 4,7·10-4 mol dm–3

Andra protolyssteget av kolsyran

Jämviktskonstanten för bildningen av karbonat ur vätekarbonatet är KA2 = [H+][CO32–]/[HCO3] = 4.69·10-11 mol dm–3

Halten karbonat blir då [CO32–] = 4,69·10-11 mol dm–3 · [HCO3] / [H+] = 4,69·10-11 mol dm–3 · 4,723·10-8 mol dm–3 / (10-8.14 mol dm–3) = 3,057·10-6 mol dm–3 ≈ 3,1·10-6 mol dm–3

Natriumvätekarbonat

Natriumvätekarbonat kallas också natriumbikarbonat, eller helt enkelt bikarbonat.

Vätekarbonatet i jämvikt med koldioxid och karbonater finns överallt i naturen

Vätekarbonat finns nästan överallt i naturen eftersom det är nära kopplat till koldioxid, som ju finns i atmosfären. Koldioxiden löser sig i vatten och bildar då kolsyra. Kolsyran står sedan i syra-basjämvikt med vätekarbonat.

Vätekarbonatet ingår i kolets kretslopp på grund av jämvikten med kolsyra. Vid matsmältningen bryts maten ned till bland annat koldioxid och vatten. Koldioxiden förs bort med blodet till lungorna. Vi andas sedan ut koldioxiden.

Växterna gör tvärtom. De tar upp koldioxid via sina klyvöppningar och koldioxiden löser sig i cellvätskorna. Där står koldioxiden också i jämvikt med vätekarbonat. I fotosyntesen binds koldioxiden/vätekarbonatet och tillsammans med vatten och solenergi bildas sockerarter som bygger upp växterna.

Kalksten är en bergart av mineralen kalciumkarbonat. Kalciumkarbonat är svårlöslig, men kan reagera med surt vatten. Surt regn får kalkstenen att lösas upp. Då bildas vätekarbonat. I havet finns stora mängder koksalt, som ju innehåller natriumjoner. Man kan därför säga att upplöst kalksten som hamnar i havet finns där i form av natriumvätekarbonat.

Vätekarbonat bildar koldioxid tillsammans med syra

Om man har karbonat i någon form, vare sig det är vätekarbonat eller karbonat, så får man koldioxidutveckling om man tillsätter syra. Följande reaktion sker:

H+ + HCO3 → H2CO3(aq) → CO2(g) + H2O(l)

från vätekarbonat, respektive

2 H+ + CO32– → H2CO3(aq) → CO2(g) + H2O(l)

från karbonat.

Detta är ett sätt att testa om ett salt innehåller vätekarbonat eller karbonat.

Vätekarbonat sönderfaller vid 200 C

Förutom att reaktionen med syra kan ge koldioxidutveckling, så kan även vätekarbonat sönderdelas av hög värme. Vid temperaturer över 200 C sker följande:

2 NaHCO3(s) → Na2CO3(s) + H2O(g) + CO2(g)

Man får även här koldioxidutveckling. Eftersom natriumkarbonat är ett stabilt ämne, så avges bara en koldioxid av två molekyler vätekarbonat.

Men om temperaturen skulle vara så hög som över 850 C, så fortsätter sönderfallet till natriumoxid, det vill säga även den andra koldioxiden avges:

Na2CO3 → Na2O(s) + CO2(g)

Bikarbonat används vid bakning

Bikarbonat (= natriumvätekarbonat) används som hävningsmedel vid bakning. Bikarbonat ingår också i bakpulver tillsammans med sura ämnen som kan få vätekarbonatet att avge koldioxid. Det är koldioxidgasen som får bakverket att bli poröst.

I recept där bikarbonat används behövs något surt som gör att vätekarbonatet kan bilda koldioxid, till exempel fil. Restprodukten natriumkarbonat är också lite bitter och tvålaktig i smaken. Därför behövs sura ingredienser i bakverket.

Övrig användning av vätekarbonat

Natriumvätekarbonat finns i brustabletter, oftast tillsammans med citronsyra. När tabletten läggs i vatten löses vätekarbonat och syra upp, så att de kan komma i kontakt med varandra och reagera. Resultatet blir kraftig koldioxidutveckling.

En bisarr och rätt grym metod att bli kvitt kackerlackor är att mata dem med bikarbonat. I kackerlackans mage utvecklas koldioxid som får insekten att svälla upp och spricka.

Natriumvätekarbonat sägs också kunna används för att bekämpa svamptillväxt.

Allmänt gäller att ämnen som används för rengöring av icke-feta fläckar är basiska. Även natriumvätekarbonat kan användas för fläckborttagning, till exempel av rostfläckar.

Salt med både sura och basiska egenskaper

Natriumvätekarbonat är ett salt med övervägande basiska egenskaper. Saltet är amfotert, dvs. kan fungera både som syra och som bas. Vätekarbonatet fungerar som bas genom att ta upp en vätejon kring pH 6,35 övergår då till kolsyra. Det kan också fungera som syra genom att avge en vätejon kring pH 10,33 och övergå till karbonat.

kolsyra pKa1,app = 6,35 vätekarbonat pKa2 = 10,33 karbonat
H2CO3(aq) H+ + HCO3 2 H+ + CO32–

Notera: Värdet pKa1,app =6,35 ovan är ett apparent pKa-värde för kolsyra som egentligen avser summan av kolsyra H2CO3(aq) och löst koldioxid CO2(aq) i jämvikt med varandra i lösningen. Mängden löst koldioxid är betydligt större än den faktiska mängden kolsyra.

Syra-basegenskaperna gör vätekarbonat till en pH-buffert

En pH-buffert fungerar så att den förbrukar tillsatt syra eller bas och stabiliserar på så vis pH-värdet. Syra-basreaktionerna för vätekarbonatet sker kring pKa-värdena pH 6,35±1 och pH 10,33±1. Det är kring dessa värden som den buffrande förmågan finns.

Vätekarbonat finns till exempel i blodet, där pH ligger mellan 7,35 och 7,45, det vill säga aningen åt det basiska hållet. Vid pH 7,4 är jämvikten 92 % vätekarbonat och 8 % kolsyra (och 0 % karbonat).

Vätekarbonat buffrar också naturliga vatten. Koldioxid som finns i atmosfären och som bildas vid nedbrytning av organiskt material kan lösa sig i vattnet. Kolsyran står då i kemisk jämvikt med vätekarbonat. Dessutom finns mineraler som är karbonater, främst kalksten. Kalkstenen kan lösas upp av syror och bilda vätekarbonat. Allt detta tillsammans ger an blandning av kolsyra, vätekarbonat och karbonat där vätekarbonatet är den viktigaste lösta jonen som buffrar pH.

Vätekarbonat finns i tabletter mot sur mage. Den pH-buffrande förmågan gör att en alltför sur mage motverkas.

Man använder också vätekarbonat i pH-buffertar på kemilab. Då används den oftast tillsammans med andra amfotera salter för att utöka den buffrande förmågan över ett större pH-intervall, inte bara kring pH 6,35 och 10,33.

Karbonater

Karbonater i naturen är mineraler som bildar basiska bergarter. De innehåller karbonatjonen, CO32–. Karbonaterna är alltså salter, men de är i allmänhet svårlösliga. Den positiva jonen är en metalljon, ofta tvåvärd.

Följande mineraler är karbonater:

Kalcit (Kalkspat) CaCO3
Magnesit MgCO3
Siderit (Järnspat, Chalybit) FeCO3
Rodokrosit (Manganspat) MnCO3
Smithsonit (Zinkspat, Calamin) ZnCO3
Dolomit CaMg(CO3)2
Ankerit Ca(Mg,Fe)(CO3)2
Aragonit CaCO3
Witherit BaCO3
Strontianit SrCO3
Cerussit PbCO3
Malakit Cu2CO3(OH)2
Azurit (Chessylit) Cu2(CO3)2(OH)2

Ett mineral betecknar en kemisk förening som ibland förekommer i ren form i naturen och ibland bildar bergarter tillsammans med andra mineraler.

Kalcit är ett mineral med stor utbredning. Det förekommer i kalkhaltiga sediment, kalksten, och i metemorfa (omvandlade) bergarter, marmor. Kalksten bildas när fossilt material från t ex skelett och snäckskal sedimenterar. Högt tryck och lång tid omvandlar så småningom sedimentet till mineral och bergarter. Krita, kritkalksten, är också en form av kalksten. Den har bildats av skalen från fritt omkringsimmande organismer i havet. Det mesta av kritkalkstenen bildades under kritaperioden. Marmor är kristallin kalksten, en omvandlad bergart.

material på avancerad nivå kommer att läggas in här

Kolsyrade drycker

Tre svenskar uppfann den kolsyrade drycken

Vi har tre svenska kemister att tacka för läskedryckerna: Urban Hjärne, Torbern Bergman och Jöns Jacob Berzelius. Alla tre gjorde upptäckter när det gäller kolsyrans alla användningsområden.

Urban Hjärne var född i Ingermanland år 1641. Ingermanland låg söder om finska viken och var på den tiden en svensk provins. Hjärne var svensk läkare, författare och naturforskare. Han hade bedrivit brunnsstudier i Tyskland och när han kom till Sverige 1656 fick han i uppdrag att leta brunnsvatten. Han fick sig tillsänt vatten från Medevi i Östergötland. Hans analyser av vattnet ledde så småningom fram till att han grundade Medevi brunn. Under 1700- och 1800-talen ansågs mineralvatten och kolsyra ha en läkande effekt. Enligt Hjärne hjälpte brunnsvatten mot det mesta. Bland annat skrev han "Det stärker matlusten, underlättar matsmältningen, häver förstoppningar och har en märklig inverkan på allsköns rubbningar i njurarnas och blåsans verksamhet." Hjärne gjorde också viktiga insatser för att stoppa häxprocesserna i Stockholm under häxhysterin åren 1668–76.

Torbern Bergman var astronom, geograf och fysiker och en av 1700-talets mest framstående svenska vetenskapsmän. På 1700-talet var det populärt bland överklassen att ”dricka brunn” vid Medevi, Ramlösa och Sätra. På vintern 1770 var Uppsala-professorn Bergman sjuk. I hans "cur för bättring" ingick ett 80-tal stop utländskt mineralvatten. Det hjälpte, men var dyrt och han led brist på medel. Detta var anledningen till att han började experimentera med mineralvatten och lyckades konstruera en apparat för att på konstgjord väg framställa dem. Detta lyckades Bergman med 1771 och sedan dess har han kallats den svenska läskedryckens fader. Receptet bakom det på konstgjord väg framställda mineralvattnet var en världssensation. Han hade dels analyserat fram flera av de salter som finns i mineralvatten, dels lyckats framställa kolsyra, eller luftsyra som han kallade det. Detta var Bergman först med i världen, även om han inte var först med att publicera upptäckten.

Jöns Jacob Berzelius har fått epitetet ”Den svenska kemins fader”. Han började sin bana med att praktisera på Vadstena apotek. År 1800 tjänstgjorde han som fattigläkare vid Medevi brunn. Så småningom blev han professor i medicin och farmaci. Han var en vetenskapsman som experimenterade flitigt. Han blandade kolsyrat vatten med olika kryddor, safter och vin. På detta sätt fick han fram olika smaksatta drycker och lade grunden för dagens kolsyrade läskedrycker. Läskedrycken är alltså en svensk uppfinning.

Läskedrycken

Kolioxid i läsken
Läsken är övermättad med kolsyra som sönderdelas till koldioxid och vatten när trycket lättar då läskedrycksflaskan öppnas.
Foto: © Svante Åberg

Vid 20 °C och 1 atm tryck löser sig 1,7 g koldioxid i 1 liter vatten. I vätskor som kolsyras under övertryck kan lösligheten av koldioxid öka 4-5 gånger. Man kan maximalt lösa 8 g koldioxid per liter vatten när man tillverkar läskedrycker. I läskedrycker är vattnet övermättat med koldioxid. Det är möjligt genom att tillföra koldioxiden under högt tryck och försluta flaskan eller burken så att det höga trycket bibehålls. När sedan läsken öppnas, så sjunker trycket till normalt atmosfärstryck. Den övermättade lösningen avger då överskottet av koldioxid som bubblor.

Vid lägre temperatur, så kan vattnet lösa mer koldioxid. Det innebär att en kyld läsk lättare behåller kolsyran.

Den pirrande känslan när man dricker kolsyrad läsk beror inte så mycket på bubblorna, utan på kolsyran som gör läsken sur. Koldioxiden reagerar med vattnet till kolsyra. Kolsyran avger sedan vätejoner på samma sätt som andra syror. Den sura smaken ger en pirrande känsla på tungan. Kolsyran gör läsken mer uppfriskande och framhäver aromen genom att föra med sig aromkomponenterna.

Ofta tillsätts även andra syror. Syrorna balanserar sötman. De vanligaste syrorna i läsk är citronsyra, fosforsyra och äppelsyra. Syran bidrar till en viss skärpa i smaken och hjälper till att släcka törsten. Syrorna sänker pH, vilket ger en viss bakteriehämmande effekt.

 Sockerdricka
Sockerdricka innehåller vatten, kolsyra och socker.
Foto: © Svante Åberg

Socker tillsätts för att förbättra smaken. Många drycker innehåller rätt mycket socker, ofta 7-12 viktsprocent. Det kan vara vanligt socker, sackaros, men artificiella sötningsmedel är också vanliga. De artificiella sötningsmedlen ger få kalorier eftersom de är extremt söta och kan tillsättas i mycket små mängder.

Dessutom tillsätts aromer av olika slag. Färg gör att drycken ser aptitlig ut.

Bakteriehämmande medel och antioxidanter förlänger hållbarheten. De vanligaste konserveringsmedlen är natriumbensoat och kaliumsorbat. Ofta används de tillsammans. Natriumbensoat är saltet av bensoesyran.

Hälsoeffekter

Kolsyrad läsk är egentligen inte särskilt naturlig, utan en kemisk blandning av olika ingredienser som ska maximera smak och upplevelse. Men kolsyrade drycker har i sig inga större negativa hälsoeffekter om man inte dricker övermåttan mycket.

Tandhälsan kan vara ett problem. Kolsyran angriper tandemaljen därför att det blir surt i munnen. Sockret som också brukar finnas i drycken bidrar också till syra som en biprodukt när bakterier i munnen konsumerar sockret. Dessutom är det vanligt med extra tillsatt fosforsyra i dryckerna, som gör drycken extra sur.

Fetma är också ett problem som förvärras av läsk. Mycket socker i läsken bidrar till fettbildning om man är storkonsument. Men det stora problemet är det sug efter energi som uppstår när man känner smaken av sötma. Då hjälper det inte att det vanliga sockret ersatts av artificiella sötningsmedel som är energifattiga. Sötsuget gör att man proppar i sig annat godis eller mat. Portionerna blir större och man äter oftare. Då kan man vara ganska säker att lägga på hullet. Läsk ska alltså drickas i måttliga mängder, inte varje dag.

I länder där dricksvattnet kan vara förorenat av bakterier kan det vara en bra att dricka läsk i stället, eller kanske till och med borsta tänderna i läsk. Men det gäller bara dig som turist som inte är van bakteriefloran. Landets egna invånare har fått motståndskraft mot de flesta bakteriestammarna.

material på avancerad nivå kommer att läggas in här

Syra-basreaktion

Syror och baser kan beskrivas som varandras motsatser. Det är nämligen så att en syra ger bort en vätejon, men en bas tar i stället emot en vätejon. Detta gör att syror och baser lätt reagerar med varandra. Man får en så kallad syra-basreaktion.

Ett annat namn för syra-basreaktion är protolys. En väteatom består av en proton i kärnan och en elektron i skalet. När vätet förlorat sin elektron och bildat en vätejon, så återstår bara protonen. Vätejon och proton är därför samma sak.

Ordet "lys" är grekiska och betyder sönderfall. När syran avger sin vätejon sönderfaller den i vätejon + den rest som blir kvar. "Proton" och "sönderfall" ger därför ordet protolys.

Neutralisation


Syra och bas reagerar i neutralisation.
Bild: Svante Åberg

Eftersom syror och baser är varandras motsatser, så har de en förmåga att förbruka varandra när de reagerar. Vid reaktionen förbrukas lika mycket syra och bas. De ämnen som i stället bildas är ofta salt och vatten, men inte alltid. Här är två exempel.

Exempel 1: HCl(aq) + NaOH(aq) → H2O(l) + Na+ + OH

Natriumjonerna och hydroxidjonerna ger saltet natriumkorid, dvs. vanligt koksalt. I syra-basreaktionen bildas också vatten.

Exempel 2: HCl(aq) + NH3(aq) → Cl + NH4+

Ammoniumjonerna och kloridjonerna ger saltet ammoniumklorid, dvs. salmiak. I denna syra-basreaktion bildas inget vatten.

Definition av syror och baser som protongivare och protontagare

syra = protongivare
bas = protontagare

Arrhenius definierar syra som protongivare

Den som först kom med en definition av syror och baser var den svenske kemisten Svante Arrhenius, vilket han fick Nobelpriset för år 1904. Arrhenius visade på förekomsten av vätejoner i vattenlösning av syror. Han definierade en syra som ett ämne som dissocieras (sönderdelas) i vatten så att vätejoner (H+) bildas.

Brønsted och Lowry definierar bas som protontagare

Den danske kemisten Johannes Nicolaus Brønsted och den engelske kemisten Martin Lowry kompletterade sedan, oberoende av varandra, teorin genom att definiera bas som protontagare. De insåg att baser har förmågan att deprotonera syror, dvs. plocka protoner från syror. Nu hade man en komplett teori som definierade syra och korresponderande bas som samma partikel, förutom skillnaden på en proton.

Syrans reaktion i vattenlösning

En generell beteckning för en syra är HA. H står för grundämnet väte, men A är en beteckning som syftar på syra (engelska Acid). Exempelvis kan HA beteckna väteklorid ,HCl, eller ättiksyra, CH3COOH.

Dissociationen av syran HA sker med reaktionsformeln:
HA → H+ + A

Vi ser att syran HA ger bort sin proton och kvar blir A. Syran HA är alltså en protongivare.

Den frigjorda vätejonen reagerar sedan omedelbart med vatten och bildar en oxoniumjon:
H+ + H2O → H3O+

Basens reaktion i vattenlösning

Basen B har förmågan att ta emot en vätejon (proton). I vattenlösning kommer vätejonen från en vattenmolekyl som har sönderdelats med reaktionsformeln:
H2O → H+ + OH

Den frigjorda vätejonen tas emot av basen i reaktionen:
H+ + B → BH+

Samtidig syra-basreaktion

Protonöverföringen kan ske direkt från syran till basen i en reaktion med formeln:
HA + B → A + BH+

En sådan typ av reaktion kallas för protolys.

Reaktionen kan också ske åt motsatt håll, dvs. att BH+ fungerar som syra när den ger en proton till A som då fungerar som bas:
A + BH+ → HA + B

Som synes kan även joner vara syror och baser, såsom att A är en bas och BH+ är en syra.

Korresponderande syra-baspar

När en vätejon avges av en syra måste det alltid finnas en bas som tar emot den. Det är nämligen så att vätejoner inte kan existera fria. När det samtidigt är så att syran blir en bas när den avger sin vätejon, och basen blir en syra när den tar emot en vätejon, så kan man alltid beskriva syra-basreaktionen på följande sätt:

HA1 + A2 A1 + HA2
syra 1 bas 2 bas 1 syra 2

I reaktionen har vi syra-basparen:
syra 1 ⇄ bas 1 + H+
syra 2 ⇄ bas 2 + H+

Nedan ges några exempel på syra-basparen i ett antal syra-basreaktioner:

syra 1 bas 2 bas 1 syra 2
HCl(aq) + NH3(aq) Cl + NH4+
CH3COOH(aq) + H2O(l) CH3COO + H3O+
CH3COOH(aq) + OH CH3COO + H2O(l)
H2O(l) + NH3(aq) OH + NH4+
H2O(l) + H2O(l) OH + H3O+

Den sista reaktionen i tabellen är intressant för att den visar att vatten kan reagera med sig själv. Denna reaktion kallas vattnets autoprotolys.

Lewis definition av syra som elektrontagare och bas som eletrondonator

syra = tagare av elektronpar
bas = givare av elektronpar

Gilbert N. Lewis definierade syra-basreaktioner som elektronöverföringar ungefär samtidigt som Brønsted och Lowry jobbade med sin definition av protolys.

För Lewis var en bas ett ämne som kunde donera ett elektronpar. En syra var då ett ämne som kunde ta emot ett elektronpar. Lewis definition av syror och baser är en bredare definition som även kan tillämpas på ämnen som inte innehåller väte. Exempelvis är bortrifluorid, BF3, en Lewis-syra som kan reagera med Lewis-basen fluorid, F:
BF3 + F → BF4.

Luftens löslighet i vatten

Luften innehåller framför allt kvävgas och syrgas, men även små mängder av argon och koldioxid. Gaserna i luften har en viss löslighet i vatten. Lösligheten beror på vilken gas det är. Koldioxiden har en särskilt hög löslighet i vatten.

Men koncentrationen av gasen i luften påverkar också hur mycket som löser sig i vattnet. Gasen i luften och gasen i löst form i vattnet står i jämvikt. Ju mer det finns i luften, desto mer löser sig i vattnet.

I vattnet finns därför mest kvävgas, därefter syrgas och sedan löst koldioxid. Koldioxiden reagerar också med vattnet och bildar kolsyra.

Salthalten i vattnet minskar gasernas löslighet. Därför är det lite mindre lösta gaser i havsvatten än i sötvatten.

Temperaturen är också viktig. Gasernas löslighet minskar snabbt med ökande temperatur. Det kalla vattnet vintertid kan innehålla betydligt med syre än det varma sommarvattnet. Vissa fiskarter, såsom laxfiskarna, är särskilt syrekrävande. De klarar sig därför inte i varma vatten.

Henrys lag

När man ska räkna på löslighet av gaser i en vätska används med fördel Henrys lag. Till exempel för att få reda på koncentrationen av syrgas i vattnet i en sjö eller koldioxidhalten i blodplasman. Lagen lyder: Vid konstant temperatur är lösligheten av en gas i en vätska proportionell mot gasens tryck. För ämnet A gäller

pA = kA·cA
där pA gasens ångtryck över lösningen, cA är koncentrationen av löst gas A och kA är en proportionalitetskonstant som är beroende av lösningsmedlet och det som ska lösas.

För koldioxid är värdet på kA = 2,98·106 dm3Pa/mol när lösningsmedlet är vatten vid 25 °C.

Koldioxiden har särskilt hög löslighet i vatten

Koldioxid är i rumstemperatur en färglös gas som är 1,5 gånger tyngre än luft vid samma tryck och temperatur. Gasen är doftlös och har en sur smak. Smaken uppkommer då koldioxid reagerar med saliv och bildar kolsyra (H2CO3). Koldioxid är den stabilaste av kolets oxider och är slutprodukten när kol och koloxider reagerar med luft eller syre. Koldioxiden lär lättlöslig i vatten. Vid 15 °C och normalt lufttryck kan man lösa nästan 1 liter koldioxid i 1 liter vatten om man har ren koldioxid ovanför vattenytan.

gas andel i luft andel i vatten
N2 78 % 51 %
O2 21 % 31 %
CO2 0,038 % 18 %

Av luftens gaser är det framför allt kväve, syre och koloxid som löser sig i vattnet. Koldioxiden är den överlägset mest lösiga gasen i vatten, syre därnäst och kväve minst. Lösligheten av "luft" ger dock omvända ordningsföljden därför att den lösta gasen i vattnet står i jämvikt med samma gas i luften. Eftersom halten koldioxid i luften bara är 0,038 %, så blir trots allt halten koldioxid i vattnet ganska liten. I luften finns 78 % kvävgas och 21 % syrgas, vilket gör att trots marginellt lägre löslighet för kvävgas i vatten än för syrgas, så är den absoluta halten kvävgas i vattnet högre.

En anledning till att koldioxid löser sig förhållandevis bra i vatten är att den reagerar med vattnet och bildar en svag tvåprotonig syra, kolsyra (H2CO3). Syran protolyseras sedan vidare till vätekarbonat (HCO3) och karbonatjoner (CO32−). Vi har alltså kopplade jämvikter mellan luftens koldioxid och karbonatet som bildas i lösningen:

CO2(g) ⇄ CO2(aq) ⇄ H2CO2(g) ⇄ HCO3 ⇄ CO32−

Det är dock bara en liten del av syran som protolyseras när koldioxid löser sig i rent vatten, större delen av kolsyran finns löst som CO2(aq). Men om vattnet är basiskt ökar lösligheten dramatiskt. Kolsyran neutraliseras nämligen av basen och jämvikten drivs kraftigt åt höger.

Temperaturberoendet hos gasers löslighet

Lösligheten av koldioxid, och andra gaser är beroende inte bara av trycket, utan även av temperaturen. I vatten gör lägre temperatur att lösligheten för gasen ökar.

Luftens löslighet i sötvatten vid olika temperaturer.
Koldioxiden (trianglar) har oproportionerligt hög löslighet med tanke på hur låga halterna är i atmosfären. Men man kan också se en trend att koldioxidens löslighet blir relativt sett sämre vid högre temperatur. Vid 0 °C är lösligheten 50% av syrets, men vid 50 °C är den bara 30% av syrets löslighet i vatten.
Bild © Svante Åberg

Lösligheten för gaserna minskar kraftigt med temperaturen, se diagrammet ovan. När man värmer upp vattnet drivs gaserna ut. De första bubblorna man ser när vattnet börjar sjuda är lösta gaser som inte kan hållas kvar lösta i vattnet på grund av stigande temperatur. När vattnet kokar, är det inte gaser som avgår utan vatten som omvandlas till vattenånga och bubblar upp.

När vatten värms upp utan att gaserna får möjlighet att avgå bildas en övermättad lösning. Det vill säga vattnet håller mer gas än vad som möjligt. Detta är vad som sker när man värmer vatten i mikrovågsugnen till 100 grader. Då skulle normalt så gott som all gas vara löst ur vattnet. Men i en mikrovågsugn värms vattnet lika mycket i hela koppen och då cirkulerar inte vattnet och gaserna kommer inte upp till ytan och kan inte avges. Därför kan det brusa om till exempel en tepåse, eller om man rör i en kopp med vatten som blivit värmd i mikrovågsugnen. Detta skiljer sig mot att värma vatten i en kastrull, då cirkulerar vattnet på grund av att det är varmare i mitten av kastrullen än på kanterna. Varmt vatten stiger, svalnar något och sjunker längs med sidorna på kastrullen. Cirkulationen gör att gaserna hela tiden kan avges till luften ovanför.

Observera att sambandet att lösligheten minskar med ökande temperatur gäller i vatten, men inte i organiska lösningsmedel. I organiska lösningsmedel ökar lösligheten för gaserna med temperaturen.

Övermättad lösning

Ett exempel på övermättad lösning är när man kokar vatten i en mikrovågsugn. När du sedan stoppar ned tepåsen, så kanske du upptäcker att det börjar skumma. Det är överskottet av lösta gaser som avgår. Vattnet blev övermättat på gas genom att lösligheten för gaserna minskade när temperaturen ökade.

Försurning av haven

Halterna i atmosfären

Koldioxidhalten i atmosfären är mycket låg, bara cirka 0,04 %, men har ändå stor betydelse i miljön. Dels är koldioxiden en växthusgas som höjer jordens temperatur, dels löser sig koldioxid lätt i vattnet och bildar kolsyra.

Halterna koldioxid i luften har ökat sedan industrialismen slog igenom och fortsätter att öka. Anledningen är att vi använder fossila bränslen som tidigare var gömda i marken och inte kom ut i atmosfären, men som nu adderas till den koldioxid som naturligt förekommer som en del av kolets kretslopp mellan växter och djur.

Löslighet och pH i vatten

Lösligheten för koldioxid i vatten är hög därför att den kolsyra som bildas när den reagerar med vattnet sedan reagerar vidare och bildar vätekarbonat. Jämviktsprocesserna gör att det då frigörs plats för att ytterligare koldioxid ska lösa sig och bilda kolsyra. Eftersom kolsyran är en syra sänks pH i vattnet, det blir surare.

Organismer med kalkskelett påverkas

I havet lever många organismer med kalkskelett. Kalken är kemiskt sett kalciumkarbonat, ett basiskt ämne. Karbonatet i skelettet står i jämvikt med löst karbonat i vattnet. Jämvikten innebär att kalken i skelettet både avger och tar emot karbonatjoner från vattnet. Men när vattnet är surt förbrukas karbonat och bildar vätekarbonat, som är en något surare form av karbonat. Detta minskar tendensen för karbonat att bindas till kalkskelettet. Resultatet blir att organismens skelett har svårt att växa till och djuret lider, överlever kanske inte.

Exempel på djur med kalkskelett är musslor, krabbor, koraller, med flera. Speciellt korallreven är illa ute. De utsätts dels för surare vatten, dels för förhöjda temperaturer som de inte tål. Dessutom är korallreven mycket långlivade kolonier som byggs upp under tusentals år och som inte klarar plötsliga förändringar i miljön.

Korallreven är mycket viktiga ekologiska system som ger skydd och underlag för otaliga arter av djur och växter. Den biologiska produktionen på reven är mycket stor. Om reven dör, så försvinner till exempel en stor del av fisken i haven.

Kolets kretslopp i havet och atmosfären

Det uppskattas att cirka 30-40 % av människans utsläpp av koldioxid absorberas av haven och andra vattendrag. Under perioden mellan år 1751 och 1996 beräknar man att ytvattnet i haven har minskat sitt pH från cirka 8,25 till 8,14. Det motsvarar en ökning av vätejonhalten [H+] med 35 %.

Det finns ett ständigt utbyte av koldioxid i sina olika former mellan atmosfären och havet, mellan vatten på olika djup, och mellan sedimenterat och löst kol. Man brukar talar om "koldioxidens biologiska och fysikaliska pumpar".


CO2-cykeln i havet och atmosfären.
CC BY-SA 2.5

Växthuseffekten

Växthuseffekten orsakas av en grupp gaser av vilka de viktigaste är vattenånga, koldioxid, metan, dikväveoxid, ozon och freoner.

Koldioxiden - en växthusgas vi behöver ha koll på

Koldioxid är genomsläppligt för solens synliga strålning, men inte för värmestrålning. Det gör att ljuset passerar genom atmosfären till jordens yta. Samtidigt som ytan värms upp så uppstår infraröd värmestrålning som inte tar sig tillbaka till rymden därför att koldioxidmolekylerna absorberar den. Denna infångade energi värmer upp atmosfären i en process som kallas för växthuseffekten.

Växthuseffekten
Atmosfärens koldioxid fungerar på samma sätt som glaset i ett växthus.
Bild: © Svante Åberg

Koldioxiden är den viktigaste växthusgasen i vår atmosfär. Koldioxiden kan liknas vid glaset i ett växthus. De energirika, kortvågiga solljuset (gult i figuren) passerar glaset/koldioxiden och omvandlas värme när det absorberas i växtligheten och marken. Värmen återutsänds som långvågig värmestrålning (orange i figuren) men denna strålning förmår inte tränga genom glas/koldioxid och hålls därför kvar.

Andra växthusgaser

Syret och kvävet som det finns mycket av i atmosfären är praktiskt taget genomskinliga för den långvågiga värmestrålningen. Därför bidrar syret och kvävet inte nämnvärt till växthuseffekten.

Men det finns andra växthusgaser, exempelvis vatten. Mängden vattenånga i atmosfären varierar mycket. Det är också ett komplicerat samspel mellan vattenånga, molnbildning och temperatur. Molnen reflekterar det synliga, infallande ljuset från solen och minskar på så vis uppvärmningen av jorden. Men molnen bidrar också till att lägga sig som ett täcke över jorden som håller kvar den infraröda värmestrålningen och bidrar till att öka växthuseffekten. Det hela blir mycket komplicerat att räkna på.

Metan är en mycket effektiv växthusgas, men förekommer å andra sidan i små mängder. Bidrag till metan i atmosfären kommer från förmultnande organiskt material, från utvinning av fossila bränslen och från boskapsskötsel. Speciellt i permafrosten i de nordligaste delarna på jordklotet finns mängder med organiskt material som inte har brutits ned fullständigt. När växthuseffekten gör att tundran börjar tina sätter metanproduktionen igång. Det ökar på växthuseffekten så att det tinar ännu snabbare. Det blir en självförstärkande reaktion som kan göra att vi tappar kontrollen över temperaturökningen. Cirka 40 % av alla metanutsläpp som orsakas av människor är kopplade till utvinningen av fossila bränslen. Även sophantering och avloppsvatten ger utsläpp. Att boskap ökar på mängden metan har att göra med deras matsmältning. Idisslande kor pruttar och rapar en hel del metan.

Växthusgasernas betydelse

Det mesta av växthuseffekten är naturlig och har alltid funnits. Den är bra och nödvändig för livet in den form det har på jorden. Jordens medeltemperatur är +15 °C. Utan växthuseffekten skulle medeltemperaturen vara c:a 30 °C lägre. Att vatten (H2O) kan förekomma i olika former är av grundläggande betydelse för många processer på jorden.

Men när vi talar om växthuseffekten menar vi ofta den ökade växthuseffekt som leder till global uppvärmning. Det är själva förändringen som är problematisk.

Om man rangordnar växthusgaserna så bidrar vatten mest till växthuseffekten, därefter koldioxid. Sedan följer ozon, dikväveoxid och metan.

Koldioxiden avviker på ett extremt sätt från den naturliga växthuseffekten i och med att den har ökat väldigt mycket på grund av människans påverkan. Problemet är att fossila bränslen som i årmiljoner varit gömda i marken nu förbränns och adderas till den naturliga mängden koldioxid i atmosfären.

Man kan tro att någon grad hit eller dit för jordens medeltemperatur inte skulle vara så viktig, men klimateffekterna är dramatiska. Vädersystemet är mycket känsligt och även mindre störningar kan förändra nederbörd, vindar och lokala temperaturer kraftigt.

Några exempel på hur klimatet kan påverkas är

Jorden är en planet med biosfär, dvs. ett tunt skikt på jordens yta där liv existerar. Den biologiska väven av otaliga organismer har genom evolutionen under årmiljarder anpassats till förhållandena på jorden. Om förhållandena ändras alltför snabbt hinner naturen inte anpassa sig och många arter går under. Även mindre förändringar i jordens klimat påverkar livet mycket.

Extrem växthuseffekt på planeten Venus

Uträkningar har gjorts på mängden koldioxid på jorden (inklusive den koldioxid som är bundet i form av karbonater och det som är löst i vatten) och jämförts med mängden koldioxid på Venus. Det har visat sig att mängderna är ungefär lika stora. Skillnaden är att på Venus finns den mesta koldioxiden i atmosfären medan den på jorden är löst i vattnet och bunden i kalksten och växtlighet. Venus atmosfär består till 96,5 % av koldioxid medan jordens atmosfär bara innehåller 0,03 %.

Växthuseffekten på jorden är tydlig, men på Venus är den extrem. Venus yttemperatur är därför mycket hög, ungefär 470 °C. Atmosfärstrycket på Venus är dessutom mycket högt, 95 bar, jämfört med jordens lufttryck på 1 bar.

material på avancerad nivå kommer att läggas in här

Ättiksyra

Ättiksyra är en organisk syra med två kolatomer och har formeln CH3COOH. Ibland skrivs på en förkortad form HAc, där Ac representerar acetatjonen CH3COO. Ättiksyran kallas också etansyra. Som alla organiska syror har molekylen den karaktäristiska gruppen –COOH.

Syran är svag med pKa = 4,76, vilket är det pH då syran har avgett 50 % av sina vätejoner. Även ganska koncentrerade lösningar av ättiksyra har därför ett pH-värde som måttligt lågt.

Ättiksyra bildas när etanol oxideras, till exempel om vin får stå öppet och utsättas för luftens syre. Vinäger bildas på detta sätt och är en gammal ingrediens i smaksättning av rätter.

Ättiksyra tillverkas vanligen syntetiskt genom reaktion mellan metanol och kolmonoxid, men kan också tillverkas med bakteriell fermentering, dvs. på biologisk väg.

En hel del ättiksyra används i hemmen för inläggningar och smaksättning, men större delen av ättiksyran som produceras används i den kemiska industrin för att tillverka estrar, speciellt vinylacetat-monomerer som sedan polymeriseras till plasten polyvinylacetat (PVA).

Ättiksyra i olika koncentrationer för olika ändamål

Ättika som säljs har olika koncentration beroende på vad den ska användas till. För olika recept kan man också späda ättikan till lämplig koncentration.

Isättika

Isättika är 100 % ättiksyra, i varje fall över 90 %. Isättika är frätande och luktar starkt. Den ska hanteras med försiktighet.

Namnet isättika kommer av att smältpunkten (= fryspunkten) för ren ättiksyra är 16,6 C, alltså strax under rumstemperatur.

Isättika fungerar som lösningsmedel för en del plaster. Till exempel brukade man skarva filmer på den tiden som filmerna byggde på ljuskänsliga silversalter på en celluloidbas. Celluloiden löstes upp av isättikan. Filmändarna lades samman och fick torka. Celluloiden smälte samman i en kemiskt homogen skarv.

Vanlig ättika

Vanlig ättika av märket Perstorp är 24 %-ig. Det finns dock andra fabrikat som säljer 12 % ättika. Ättikan hanteras med viss försiktighet. Den har en stark lukt. Ofta späder man ättika enligt anvisningarna i matrecepten.

Ättika är bakteriedödande. Till exempel kan man i samband med avfrostning av kylskåpet passa på att skölja av det invändigt med en lösning av lika delar ättika och vatten. Men se till att skölja efter med rent vatten så att resterna av ättika inte finns kvar och kanske påverkar plasten.

Ättika kan också användas för att ta bort kalkavlagringar på diskbänken eller i kaffebryggaren.

Ett recept för att avkalka kaffebryggaren är att blanda 1 dl 24 % ättika med 6 dl vatten i kaffebryggaren. Sätt på bryggaren så att hälften av lösningen passerar. Stäng av bryggaren i 10 minuter för att ättiksyran ska få verka. Sätt på den igen och låt resten av lösningen passera. Brygg därefter 3-4 omgångar med rent vatten.


Ättiksyra ger snabbt ärg av kopparacetat på en kopparslant.
Bild: Svante Åberg

Ättiksyra har en förmåga att snabbt ge grön ärg på koppar. Det räcker med ångorna från ättikan för att kopparen ska ärga inom några timmar. Föreningen som bildas är kopparacetat.

Ättiksyrans förmåga att korrodera koppar, men även andra metaller, gör att den bör användas med försiktighet i kontakt med till exempel elektronisk utrustning. Glöm inte att även ångorna av ättiksyra kan vara korrosiva.

Ättiksprit

Ättiksprit är 12 %. Den fungerar som vanlig ättika, men är hälften så koncentrerad.

Den kan blandas till av 1 del 24 % ättika + 1 del vatten.

Ogräsättika

Ogräsättika är ofta 12 %.

Om du inte vill köpa särskild ogräsättika, så kan du själv blanda till ogräsättika av 1 del 24 % ättika + 1 del vatten.

Ättika dödar växter och kan användas som ogräsmedel. Spruta ättiklösningen på ogräset eller vattna med den, så dör ogräset inom 2-3 dagar. Eftersom ättiksyra avdunstar, så ska man inte använda det i växthus eftersom ångorna sprider sig även till växter man vill ha kvar.

Använd inte ogräsättika till matlagning eftersom du inte kan vara säker på att den inte innehåller andra tillsatser som ska döda ogräset.

Inläggningsättika

Inläggningsättika är vanligtvis 6 %.

Den kan blandas till av 1 del 24 % ättika + 3 delar vatten.

Matättika

Matättika är vanligtvis 3 %.

Den kan blandas till av 1 del 24 % ättika + 7 delar vatten.

Vinäger

Vinäger innehåller ättiksyra, men är inte bara ättika. Vinägern innehåller dessutom smakämnen från det vin eller den cider som den är framställd av.

Ättiksyra som lösningsmedel

Sammantaget har ättiksyran både polära och opolära egenskaper. Den kan därför lösa polära ämnen, såsom alkoholer, sockerarter och salter, men är även löslig i opolära lösningsmedel såsom kloroform och hexan.

Polära egenskaper

Ättiksyrans karboxylgrupp –COOH ger polära egenskaper, särskilt när syran dissocieras till acetat, Ac. Ättiksyran är en svag syra och i vattenlösning har vi följande jämvikt:

HAc + H2O ⇄ H3O+ + Ac

Jämvikten i vattenlösning förskjuts åt höger när ättiksyralösningen är utspädd. Då förekommer mera av syran i form av den korresponderande basen acetat, som är en negativ jon.

Opolära egenskaper

I en koncentrerad lösning är jämvikten förskjuten åt vänster, det vill säga syraformen, som är en oladdad molekyl. I sin syraform är de polära egenskaperna mindre framträdande. Till det bidrar kolvätegruppen –CH3.

För ättiksyra gäller att Ka = 1,75·10–5 M. Med lite räknande kan man få fram att för en lösning av 0,1 M ättiksyra så är bara 1,3% av ättiksyramolekylerna protolyserade.

Tunnskiktskromatografi

I tunnskiktskromatografi är det viktigt att hitta en eluent med rätt polaritet för att kunna ge rätt löslighet åt de provfläckar som ska vandra på tunnskiktsplattan. Ofta väljer man en blandning av kolväte + ester + organiskt syra. Ett typiskt recept kan innehålla hexan + etylacetat + ättiksyra + vatten.

Litteratur

  1. Carbon Dioxide, Chemical of the Week, Bassam Shakhashiri
    http://www.scifun.org/CHEMWEEK/CarbonDioxide2017.pdf (2017-03-10)
  2. Carbon dioxide in Earth's atmosphere, Wikipedia
    https://en.wikipedia.org/wiki/Carbon_dioxide_in_Earth%27s_atmosphere (2017-09-07)
  3. Ocean acidification, Wikipedia
    https://en.wikipedia.org/wiki/Ocean_acidification (2017-09-08)
  4. Carbon Dioxide and Carbonic Acid, Utah State university
    http://ion.chem.usu.edu/~sbialkow/Classes/3650/Carbonate/Carbonic%20Acid.html (2017-09-08)
  5. Dissolved Oxygen and Carbon Dioxide, Prof. Shapley, University of Illinois
    http://butane.chem.uiuc.edu/pshapley/GenChem1/L23/web-L23.pdf (2017-09-08)
  6. Hans Jürgen Press, Lära på lek, 1988, uppgift 24, Raben Sjögren, Stockholm.
  7. Christie L. Borgford, Lee R. Summerlin, Chemical activities, Teacher edition, 1988, American Chemical Society, Washington, DC.
  8. Borén m.fl., Kemi 1 för gymnasieskolan, 1982, Esselte Studium, Stockholm.
  9. Atommassa, Mauritz Strandelin, material skrivet för kursen "Experimentell kemi för högsstadiet och gymnasiet, 10 p", ht98-vt99.
  10. Leden, Lindhe, Kemi Fakta, 1986, Esselte Herzogs, Uppsala.
  11. Else W Ramstad, Vardagslivets kemi och fysik, LTs förlag, Stockholm.
  12. Torry Lindström, "Mysteriet med sjön som sprang i luften", Illustrerad Vetenskap, 1987, Nr. 5, Fogtdals förlag, Malmö.
  13. Degassing Lakes Nyos and Lake Monoun
    http://www.biology.lsa.umich.edu/~gwk/research/nyos.html (2003-06-05)
  14. Lake Nyos, Cameroon, August 1986, John P. Lockwood
    http://www.volcanologist.com/pages/1986.html (2003-06-05)
  15. Lake Nyos, Oku Volcanic field, Cameroon
    http://volcano.und.nodak.edu/vwdocs/volc_images/africa/nyos.html (2003-06-05)
  16. Mass Extinction is Explained
    http://www.news.harvard.edu/gazette/1996/08.15/MassExtinctioni.html (2002-11-30)
  17. Carbon Dioxide, Caves and You, Garry K. Smith
    http://wasg.iinet.net.au/Co2paper.html (2003-06-05)
  18. The Ideal Gas Laws, Ralph Logan
    http://members.aol.com/profchm/gas_laws.html (2003-06-05)
  19. Torris (kolsyreis) - koldioxid CO2, i fast form, AGA
    http://www.primetime.se/aga.htm (2003-09-02)
  20. Koldioxid - CO2, Brand & Fordonsskydd AB
    http://www.foretag.alvsbyn.net/brandfordon/info/06.html (2003-09-03)

Fler experiment


fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

gaser
Blåsa ballong med hjälp av PET-flaska
Den tillknycklade plåtburken
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Ett glas luft
Försvinnande bläck
Gasvolym och temperatur
Ljuset under glaset
Mentos-pastiller i kolsyrad läsk
Osynlig gas
Syrehalten i luft

syror och baser
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Badbomber
Brus-raketen
En märklig planta
Flaskor mun mot mun
Försvinnande bläck
Göra lim av kasein
Höna med gummiben?
Indikatorpärlor
Kemi i en plastpåse
Kemiskt snöfall
Löslighet och pH - En extraktion
Mentos-pastiller i kolsyrad läsk
Modellmassa av mjölk
Osmos i ett ägg
Pelargonens färg
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Regnbågens färger med Rödkåls-indikator
Saltkristaller av en aluminiumburk
Surt regn
Syror och baser i konsumentprodukter
Tag bort rostfläcken med det ämne som gör rabarber sura
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Växtfärga med rödbetor enligt receptet från Västerbotten
Älskling, jag krympte ballongen

urval experiment under revidering
Badbomber
Bjud din jäst på mat
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den bästa bulldegen
Diffusion av kopparjoner
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Eld - varför brinner det?
Elda stålull
En märklig planta
Gelégodis i vatten
Gör hårt vatten mjukt
Gör kopparslanten skinande ren - med redoxkemi
Hur gör man kakan porös?
Indikatorpärlor
Kemi i en brustablett
Kemi i en plastpåse
Koka vatten i en spruta
Ljuset under glaset
Mentos-pastiller i kolsyrad läsk
När flyter potatisen?
Osmos i ett ägg
Osmos i potatis
Pelargonens färg
pH i kokt mineralvatten
pH-beroende avfärgning av rödkål
pH-förändringar vid fotosyntes
Principen för dynamisk jämvikt
Pulversläckare
Regnbågens färger med Rödkåls-indikator
Surt regn
Syror och baser i konsumentprodukter
Tvätta i hårt vatten
Varför äter vi Samarin?
Vattenrening