Försvinnande bläck

Tillhör kategori: fysikalisk kemi, gaser, jämvikt, syror och baser, urval gammal version av experiment

Författare: Rickard Engström, Kenneth Forsberg

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Irriterande Använd skyddsglasögon 

Tid för förberedelse: 10 minuter

Tid för genomförande: 10 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Utföres med normal varsamhet

Svårighetsgrad: Kräver viss labvana

Introduktion

I experimentet får du lära dig tillverka försvinnande "bläck" på ett enkelt sätt. Detta bläck kanske du redan hört talas om i skämtbutikerna. Det fungerar på så sätt att man "råkar" spilla bläck på ett vitt bomullstyg, detta bläck kommer sedan efter ett tag att försvinna framför åskådarnas ögon och framkalla många förvånade ansiktsuttryck.

Riktlinjer

Detta experiment utförs lämpligen som ett lärarlett experiment för att väcka intresse hos eleverna. Kan säkert lätt spåra ur som elevförsök vid låg ålder. På gymnasiet går det givetvis att använda som elevförsök men det är så klart läraren sak att avgöra vilken mognad eleverna uppnått.

Säkerhet

Den enda säkerhetsrisken är att lösningen är basisk och därmed kan verka irriterande på hud och framförallt ögon. Därmed bör det hanteras med viss försiktighet.

Överbliven basisk lösning kan spolas ned i slask med rikligt med vatten. pH-indikator kan sparas och användas till andra experiment men även den är vattenlöslig och kan skpolas i vasken.

Materiel

Förarbete

pH-indikatorer måste beredas eller tas fram (fenolftalein eller tymolftalein).

Dessutom måste en lämpligt basisk lösning beredas (pH 10-11). Tidsåtgång: 5-15 min.

Utförande

Beredning av pH-indikator

  1. Väg upp 0,05 g av tymolftalein eller fenolftalein.
  2. Lös upp pH-indikatorn i 50 ml isopropanol.
  3. Späd lösningen med vatten till 100 ml.

Beredning av bas

Tillsätt 2-3 droppar 0,1 M NaOH till 1 dl vatten vilket ger pH ≈ 10.

Själva experimentet

  1. Tag med pipett ett par droppar av indikatorn och tillsätt till den basiska lösningen.
  2. Spruta därefter en liten mängd av lösningen på bomullstyget.
  3. Vänta och se vad som händer.

(Experimentidé från referens [1])

Förklaring

Den av indikator färgade basiska lösningen neutraliseras av koldioxiden i luften och övergår till sin sura, ofärgade form. Färgomslaget sker då pH i lösningen sjunker under pH 10,5 - 8, beroende på vilken indikator man använt.

Bläcket bleknar snabbt, men det tar längre tid för koldioxiden att diffundera genom hela lösningen om skiktet är tjockt.
Foto: © Svante Åberg

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Indikatorn deltar i en syra-basjämvikt

pH-indikatorer är svaga organiska syror vars färg ändras med pH-värdet hos den lösning i vilken de ingår. Det är indikatorerns negativa jon som har en annan färg än den oprotolyserade syran. Indikatorsyran brukar ofta betecknas HIn. Indikatorns protolys i vatten [2]:
HIn + H2O ⇔ H3O+ + In-
sur form basisk form
Eftersom endast en liten mängd av indikatorn är löst i lösningen beror jämviktsläget endast på koncentrationen H3O+. En sur lösning kommer således att vara starkt förskjuten åt vänster vilket gör att koncentrationen HIn är stor i jämförelse med koncentrationen In-. Detta gör att lösningen får indikatorns "sura" färg. Vid basisk lösning kommer det motsatta att ske och lösningen får indikatorns "basiska" färg.

Om indikatorn HIn har syrakonstanten Ka gäller vid jämvikt att [2]:
Ka för en indikator

Vanligtvis används dessa indikatorer för att snabbt mäta pH där kravet på noggrannhet inte är så stort. Olika indikatorer ändrar färg vid olika pH och lämpar sig därför att användas i olika miljöer.

Om en syra innehåller ett syra-baspar där syran och den korresponderande basen har olika färg, sker en förändring av färgen vid förskjutning av syra-basjämvikten. Färgen blir alltså beroende på lösningens surhetsgrad, dvs koncentrationen av syra-basparet.

I indikatorerna till detta experiment är det bara basen som har en för ögat synlig färg (ljusabsorption i spektrums synliga del) medan syran är färglös. Fenolftalein är rödlila i sin basiska form med ett omslagsintervall mellan pH 8,3 och pH 10,0, medan tymolftalein är blå i sin basiska form och har ett omslagsintervall mellan pH 9,3 och pH 10,5 [3].

Jämviktens förskjutning med surhetsgraden kan beskrivas med nedanstående formel [2]:
pH och indikatorform

Där Xb = [In-]/([HIn]+[In-]) = andel av indikatorn som är i sin basiska form är basbråket för indikatorparet. Enligt detta resonemang visar halva indikatormängden sur och halva basisk färg när Xa = Xb = 0,5. D.v.s. när pH = pKa.

Reaktionerna i experimentet

De reaktioner som sker i detta experiment är följande: Koldioxiden reagerar med vattnet [4] och bildar kolsyra (1). Denna kolsyra är en tvåprotonig syra som protolyseras i två steg enligt formler nedan [1 Hans Borén]. I första steget bildas vätekarbonatjoner och fria protoner (2). I andra steget bildas karbonatjoner och fria protoner (3).

1) CO2(aq) + H2O(l) → H2CO3(aq)
2) H2CO3(aq) + H2O(l) → H3O+(aq) + HCO3-(aq)
3) HCO3-(aq) + H2O(l) → H3O+(aq) + CO32-(aq)

Fenolftalein (3D-struktur i MOL-format) som kan användas i försöket har en struktur som ändras vid protolysen:
Strukturer för fenolftaleins sura och basiska former

Det finns många naturliga indikatorer

Exempelt på naturliga indikatorer är te, rödbetor, blåbär [4], rödkål, blåsippor [5]. Blåsippor som växer på kalkrik mark (basisk) blir röda. Nämnas kan även att lackmus tillverkas ur en lav av släktet roccella [5]. De flesta röda, violetta och blå färgerna i naturen orsakas av Anthocyaniner. Dessa återfinns hos bl.a. blåklocka, midsommarblomster, blåbär, hallon och gröna löv.

Fördjupning

Fenolftalein

Fenolftalein är en vanlig pH-indikator i skolan. Den är ofärgad i sura och neutrala lösningar, men blir rosa i basiska lösningar. Omslaget från ofärgad till rosa sker kring pH 9,7. Något som de flesta inte vet är att fenolftalein blir varmt djupröd i mycket sura lösningar där pH är under 0.

Fenolftalein har använts som laxermedel i över ett århundrade. Laxermedel gör avföringen lösare under en tidsperiod på 3-4 dagar. Misstanke om att fenolftalein kan ha en cancerogen effekt gör att man numera undviker den i laxermedel.

Nygjuten betong innehåller kalciumhydroxid, så kallad släckt kalk. I kontakten med luftens koldioxid reagerar den och bildar kalciumkarbonat inom några timmar. Bildningen av kalciumkarbonat gör betongen starkare. För att testa betongen använder man fenolftalein. Kalciumhydroxiden har pH över 8,6 och ger rosa färg med fenolftalein. Men kalciumkarbonatet har pH kring 8,4, vilket gör att fenolftaleinet förblir ofärgat.

Jämvikten för fenolftalein mellan den ofärgade (H2In) och rosa (In2-) formen ovan innebär reaktion med två hydroxidjoner. Det är egentligen en reaktion i två steg med en hydroxid vardera gången, men man ser inte någon färgförändring i det första steget. Eftersom en indikator tillsätts i så liten mängd, så har det ingen praktisk betydelse att det går åt två hydroxidjoner.

Reaktionsstegen mer i detalj är följande:
H3In+ (varmröd) ⇄ H2In (ofärgad), pK0 = 0
H2In (ofärgad) ⇄ HIn- (ofärgad), pK1 = 9,05
HIn- (ofärgad) ⇄ In2- (rosa), pK2 = 9,5
In2- (rosa) ⇄ In(OH)3- (ofärgad), pK3 = 12

(Notera att uppgifter om pK-värdet för fenolftalein varierar något beroende på källa. Vanligen anges pK = 9.7, men i referensen till denna lista anges pK2 = 9.5: Se Acid–base reactions of phenolphthalein)

Det kan också verka konstigt att vi talar om hydroxidjoner i pH-jämvikten i stället för vätejoner. Det är fullt möjligt att skriva jämvikten som en reaktion med vätejoner, men det stämmer bättre med verkligheten att tala om hydroxid eftersom vattnet vid omslaget pH = 9.5 är basiskt.

Tymolftalein

Tymolftalein är en pH-indikator med färgomslag vid pKa = 9,9. ...

Indikator

Indikatorn känner av andra kemiska ämnen

En indikator är ett ämne som används för att visa på ett annat ämne. Indikatorns färg påverkas av om det finns mycket eller lite av ämnet i lösningen.

Typiskt är att indikatorer har en mycket stark färg. Tack vare den starka färgen behöver man bara tillsätta en liten mängd av indikatorn. Det har fördelen att man inte påverkar lösningen så mycket. För att indikatorn ska ändra färg krävs nämligen att den reagerar med det ämne som den ska påvisa. Då förbrukas lite av just detta ämne. Men när indikatortillsatsen är liten så blir också denna påverkan liten.

Det finns många sorters indikatorer. Några huvudtyper är:

Indikatorn avslöjar jämviktsläget

Indikatorer deltar i jämviktsreaktioner och därför kan ge information om den kemiska miljön, t.ex. om den är övervägande sur eller basisk, övervägande reducerande eller oxiderande, övervägande rik eller fattig på komplexbildande ämnen.

pH-indikatorer reagerar med vätejoner, H+, i jämvikten
HInd ⇄ Ind- + H+

Principen vid jämviktsreaktioner är att partiklar som finns i stor mängd tenderar att förbrukas i reaktionen. På motsvarande sätt tenderar partiklar som finns i liten mängd att bildas i reaktionen.

I en sur lösning är det gott om vätejoner. Jämvikten ovan förskjuts då åt vänster för att förbruka vätejonerna. Samtidigt bildas formen HInd av indikatorn. Om vi tar BTB (bromtymolblått) som exempel, så är formen HInd starkt gul.

I en basisk lösning är mängden vätejoner mycket liten. Jämvikten ovan förskjuts då åt höger och formen Ind- av indikatorn bildas. I fallet med indikatorn BTB så är denna form starkt blå.

Värdet pKInd

pH-indikatorn BTB slår om vid pH 7,0, dvs. när vattenlösningen är neutral. Vid pH 7 finns det lika mycket av de två formerna, dvs. 50 % IndH och 50 % Ind-, av indikatorn. Färgen blir då grön som är en blandning av gult (IndH) och blått (Ind-).

Men de flesta pH-indikatorer byter färg vid andra pH än 7. Till exempel slår metylrött om vid pH 5,1. Det har att göra med indikatormolekylens förmåga att binda vätejoner. För att få ett mått på indikatorns omslags-pH har man definierat pKInd så att det är lika med det pH när färgomslaget sker. Vi har därför
pKBTB = 7,0
pKmetylrött = 5,1

Sambandet mellan pH, pKInd och halterna av de två formerna av indikatorn är
pH = pKInd + log10([Ind-]/[IndH]), där de raka parentestecknen [...] anger "koncentrationen av ...".

När [Ind-] = [HInd] förenklas uttrycket till
pH = pKInd + log10([Ind-]/[HInd]) =
pKInd + log10(1) = pKInd + 0 = pKInd

pH-indikatorns jämvikt

Indikatorn bromtymolblått
Bild: ©Svante Åberg

pH är ett mått på halten av vätejoner. Sambandet mellan pH och vätejonhalten är
pH = -log10[H+].

pH-indikatorn används för att ge en färgindikation på vilket pH som råder i lösningen.

En pH-indikator är i sig själv ett syra-baspar. Syraformen HInd och basformen Ind- står i jämvikt med varandra. pH-indikatorns jämvikt kan skrivas

HInd H+ + Ind-
syraform
av indikatorn
vätejon basform
av indikatorn

Övriga syror och baser i lösningen förekommer i mycket större mängder och styr därför lösningens pH. pKIind är det pH då indikatorn byter färg. Beroende på pH förekommer pH-indikatorn i sin syraform eller basform.

pHsyraformen HIndbasformen I-
pH < pKInd-2≈ 100 %≈ 0 %
pH = pKInd= 50 %= 50 %
pH > pKInd+2≈ 0 %≈ 100 %
generell formel
för varje pH
log10{[Ind-]/[HInd]} = pH - pKInd

[Ind-]/[HInd] = 10pH - pKInd

I praktiken förekommer båda formerna av indikatorn bara om pH ligger inom intervallet pKInd±2. Om pH = pKInd så förekommer indikatorn till 50 % som HI och till 50 % som I-. Indikatorns färg är då blandfärgen av syraformen och basformen.

Universalindikator

Genom att blanda indikatorer med olika pKInd så kan man få en färgskala med flera omslag på pH-skalan. Det är då möjligt att påvisa flera olika pH-värden i stället för bara se om pH ligger under eller över ett visst värde.

Yamadas pH-universalindikator från 1933 är en blandning av 0,025 g tymolblått, 0,060 g metylrött, 0,300 g bromtymolblått och 0,500 g fenolftalein löst i 500 ml etanol och sedan spädd med avjonat vatten till 1000 ml.

pH-begreppet


pH-värden för några vanliga ämnen.
"pH scale" av OpenStax College" (CC BY 3.0)

pH är ett mått på surhetsgraden i en vattenlösning. Det som gör vattnet surt är vätejoner, H+. Vätejoner kommer från syror, såsom ättiksyra, svavelsyra eller kolsyra, men jonerna bildas inte förrän syran löser sig i vatten.

pH är definierat bara i vattenlösningar. Man kan alltså inte ange pH för till exempel en etanollösning, även om syran kan lösa sig i etanolen och avge vätejoner på liknande sätt som i vatten.

pH i vardagen

Det är vätejonerna som ger de sura egenskaperna hos lösningen. Till exempel är vätejoner frätande på många ämnen. Vätejonerna ger också en syrlig smak. Faktiskt är mycket av det vi äter mer eller mindre surt. Frukter innehåller fruktsyror av olika slag. Filmjölk innehåller mjölksyra och läsk innehåller kolsyra. Den syrliga smaken är faktiskt uppfriskande.

Vattenlösningar med högt pH innehåller väldigt lite vätejoner. De är basiska. Basiska livsmedel finns nästan inte. Undantag kan vara svagt basiska kakor bakade med bikarbonat eller lutfisk där det finns små rester av luten. Däremot är många rengöringsmedel starkt basiska. I basiska lösningar är halten vätejoner väldigt låg. I stället finns det gott om hydroxidjoner, OH.

pH-skalan

pH-skalan går från cirka pH 0 för starkt sura lösningar via pH 7 för en neutral lösning till cirka pH 14 för mycket basiska lösningar.

Vätejonerna (H+) står i jämvikt med hydroxidjonerna (OH) i vattenlösningen. Vätejoner och hydroxidjoner är som vågskålarna i en balansvåg. När det finns mycket av den ena finns det lite av den andra, och vice versa. Det väger jämnt vid pH 7, när vattnet är neutralt. Så är fallet i alldeles rent vatten.

pH-skalans koppling till koncentrationen av vätejoner

Halten av vätejoner kan variera mycket. I mycket sura lösningar är halten i storleksordningen 1 mol/dm3. I mycket basiska lösningar är halten väldigt låg, ned till cirka 0,00000000000001 mol/dm3. I en neutral vattenlösning är halten 0,0000001 mol/dm3.

För att slippa skriva så många siffror, så kan man uttrycka halterna med hjälp av 10-potenser. Då blir det på följande sätt:

lösning[H+] på vanligt sätt[H+] med 10-potenserpH
mycket sur1 mol/dm3100 mol/dm3 0
neutral0,0000001 mol/dm310–7 mol/dm37
mycket basisk0,00000000000001 mol/dm310–14 mol/dm314

Man använder hakparenteser för att ange att det handlar om koncentrationen av något. Koncentrationen av vätejoner betecknas då [H+].

Genom att definiera pH som exponentens värde med motsatt tecken, så kan vi hantera halter från suraste lösningen till den mest basiska utan att skriva så många siffror. I tabellen finns pH-värdet i kolumnen längst till höger.

När man skriver 10-potenser är exponenten ett mått på storleksordningen hos vätejonhalten. Varje minskning av pH med ett steg motsvarar en multiplikation av vätejonkoncentrationen med faktorn 10, och ökning av pH motsvarar en division av vätejonkoncentrationen med faktorn 10. Att låga pH ger hög halt av vätejoner beror på att man bytt tecken när man definierat pH.

På motsvarande sätt motsvarar 2 steg faktorn 100, 3 steg faktor 1000, och så vidare.

Beräkningar med pH och [H+]

Man får man pH-värdet ur vätejonkoncentrationen med följande formel:
pH = –log [H+]

Omvänt beräknar man vätejonkoncentrationen ur pH-värdet med följande formel:
[H+] = 10–pH

Formell definition av pH


Moln av motjoner bildas kring enskilda joner i lösningen.
"Ionenverteilung inLoesung" av Daniele Pugliesi" (CC BY 3.0)

I praktiken använder man koncentrationer av ämnen i lösningar när man räknar på kemiska jämvikter. Koncentrationen av vätejoner, [H+], stämmer väl med hur stor effekt vätejonerna har kemiskt när de deltar i kemiska reaktioner om lösningen är relativt utspädd. Men om koncentrationen är högre än cirka 0,1 mol/dm3, så börjar man se tydliga avvikelser mellan den faktiska kemiska effekten och den man förväntar sig utifrån koncentrationen.

Orsaken till att kemisk effekt och koncentration inte längre är proportionella vid höga koncentrationer är att det bildas moln av motjoner kring vätejonerna som påverkar deras möjlighet att delta i kemiska reaktioner. Detta beskrivs av Debye–Hückel i deras teori. De kom fram till en korrektionsfaktor som kallas aktivitetskoefficient.

Vätejonens kemiska aktivitet, som betecknas {H+}, får man genom att multiplicera jonkoncentrationen [H+] med aktivitetskoefficienten γ.


Aktivitetskoefficienten γ för lösningar med olika jonstyrkor.
"Debye-Hückel equation" av V8rik" (CC BY 3.0)

Vid låga koncentrationer är aktivitetskoefficienten γ = 1, men vid högre koncentrationer tenderar γ att vara mindre än 1.

Debye–Hückels teori för aktivitetskoefficienten γ bygger på lösningens jonstyrka. Om lösningen bara innehåller envärda joner, så är jonstyrkan lika med koncentrationen av saltet. Men om lösningen innehåller 2-värda, eller till och med 3-värda joner, så blir jonstyrkan betydligt högre. Då sjunker aktivitetskoefficienten betydligt mera.

Den formella definitionen av pH bygger på vätejonens aktivitet:
pH = –log {H+}, där {H+} = γ [H+]

Omvänt får man:
{H+} = 10–pH

Natriumhydroxid

Egenskaper

Natriumhydroxid, NaOH, är ett vitt, fast salt som är lättlösligt i vatten. Upplösningen sker under kraftig värmeutveckling. Om tillsatsen av fast natriumhydroxid är stor kan värmeutvecklingen bli så kraftig att det finns risk att bränna sig. Natriumhydroxid innehåller den starka basen OH och är frätande både i vattenlösning och i fast form. Eftersom den är lättlöslig kan man få lösningar med mycket stark basisk reaktion.

Ibland kallas natriumhydroxiden för "kaustik soda" vilket betyder "frätande soda". Sodan anger att ämnet är basiskt. Benämningen "kaustik" används för att skilja natriumhydroxiden från vanlig soda som är natriumkarbonat, Na2CO3. Ytterligare ett namn på natriumhydroxid är "natronlut". Då man köper natriumhydroxid får man det ofta i formen flingor eller små pastiller.

Hälsorisker

Den starkt basiska hydroxiden denaturerar och bryter ned proteiner. Speciellt utsatt är man för stänk i ögat. Ögat är nämligen fullt med proteiner som koagulerar och bildar en vit massa, som äggvitan i ett kokt ägg. Det är därför viktigt med glasögon när du arbetar med natriumhydroxid. Om du ändå skulle få stänk i ögat måste du omedelbart spola ögat rikligt med rinnande vatten och fortsätta skölja länge. Ring läkare och be om råd när du har spolat ögat i några minuter, eller ännu bättre - be någon hjälpa ringa dig medan du fortsätter spola. Sedan måste du besöka läkare för kontroll och eventuell behandling.

Stänk på huden är visserligen frätande, men inte farliga på samma sätt. Huden är tjock och släpper inte igenom luten. Om du sköljer omgående, så klarar du dig sannolikt utan skador. Stänk på kläder, arbetsbänkar och liknande ska sköljas och torkas bort på en gång, så att det inte blir bortglömt. Annars kan någon ovetande komma i kontakt med hydroxiden och kanske gnugga sig i ögat.

Koncentrationen har betydelse

Hydroxidens frätande förmåga är har direkt samband med koncentrationen. En vanlig förrådslöning med NaOH är ofta 2 molar (2 M, 2 mol/dm3). Den är kraftigt frätande och ska behandlas med stor försiktighet. En NaOH-lösning på lab som är 0,1 mol/dm3 är inte alls lika farlig, men ändå ganska stark. Om koncentrationen är 0,010 mol/dm3, så kan NaOH-lösningen betraktas som relativt ofarlig, men ändå riskabel att få stänk av i ögonen. Är den bara 1 millimolar, dvs. 0,001 mol/dm3, så är NaOH-lösningen tämligen harmlös, för då är den 2000 gånger mer utspädd än förrådslösningen som var 2 mol/dm3.

Hydroxidjonen liknar fluoridjonen

Hydroxidjonen OH och fluoridjonen F har samma laddning och är lika stora. Det innebär att de ofta är utbytbara.

Tandemalj innehåller ämnet hydroxidapatit, Ca5(PO4)3OH, där hydroxidjonen ingår. Hydroxidjonen som ingår i tandemaljen är en stark bas som lätt reagerar med syra som produceras av bakterier i munnen. Det leder till att tandemaljen löses upp. Men om man ersätter hydroxidjonerna med fluoridjoner så att det i stället bildas fluoridapatit, Ca5(PO4)3F, så minskar känsligheten för syra. Fluoridjonen är en mycket svagare bas än hydroxidjonen. Därför reagerar den inte lika lätt med syra och då är också tandemaljen mindre känslig för syra.

Ytterligare ett exempel på likheten är mätning med jonselektiv elektrod avsedd för bestämning av fluoridhalten. I en starkt basisk lösning är hydroxidhalten hög och på grund av likheten med fluoridjoner ger hydroxidjonerna också utslag med den fluoridselektiva elektroden. Man får en så kallad interferens från hydroxid i fluoridmätningen och resultatet blir en överskattning av fluoridhalten i lösningen.

mer material på avancerad nivå kommer

Luft

Atmosfären

Luften är den atmosfär som omger jorden och som vi andas. Luftlagret kring jordklotet är tätast vid jordytan, men tunnas successivt ut innan det övergår i rymden. Man brukar säga att atmosfären är 100 km tjock, därefter är man ute i rymden. Men det finns spår av jordens atmosfär ända upp till 1000 km höjd. Det kan verka som att atmosfären är väldigt tjock, men i jämförelse med jordens storlek är luftlagret bara en tunn hinna.

Sammansättningen hos torr luft är:

kväve (N2)78,08 %
syre (O2)20,95 %
argon (Ar)0,93 %
koldioxid (CO2)0,04 %
diverse ädelgaser, väte, mm....

Vattenångan i luften

I tabellen finns inte vattenånga med. Andelen vattenånga är variabel och beror främst på temperaturen. På sommaren är halten vattenånga i atmosfären mycket högre än på vintern. Den totala mängden vatten i luften motsvarar i genomsnitt bara 25 mm regn om allt vatten i atmosfären på hela jorden skulle falla ned som regn samtidigt.

Den tidiga atmosfären

Luften har inte alltid haft den sammansättning den har nu. När jordklotet nyss hade svalnat, efter att solsystemet skapats, fanns inget syre. Atmosfären bestod mest av koldioxid. Efter livets uppkomst ändrades successivt förhållandena. När fotosyntetiserande organismer producerade syre som slaggprodukt, var det till en början så att syret bands till järn och bildade rost. Men när järnet tog slut blev det överskott av syre som hamnade i atmosfären. Nya organismer som andades syre utvecklades. Under en period var syrehalten i atmosfären över 30 %, men sedan minskade det igen till dagens 21 %. Syrehalten i atmosfären fortsätter faktiskt att minska, något som har pågått under 1 miljon år, men minskningen är mycket långsam.

Luftens kvalitet

Vi är helt beroende av atmosfären. Människor och djur måste andas luften för att få syre. Syret skulle kunna ta slut om inte växter producerade syre med hjälp av energin i solljuset. Växterna andas i stället in koldioxid som vi andas ut, så växter och djur är beroende av varandra.

Luftens kvalitet är också viktig. Till exempel kan överskott av växthusgaser rubba jordens temperatur så att klimatet ändras och kanske går över styr. Föroreningar sprids också lätt med vindarna och skapar problem. Sura gaser orsakade stora försurningsproblem för ett antal årtionden sedan, men lyckligtvis har man tagit itu med problemet så att situationen med försurning inte är lika kritisk nu.

material på avancerad nivå kommer att läggas in här

Koldioxid

Egenskaper

Koldioxid är en luktlös gas, men vid höga koncentrationer kan man få en sur smak i munnen som beror på att gasen löser sig i saliven och bildar kolsyra. Inandning av koldioxid i onormalt höga halter kan leda till huvudvärk, illamående och kräkningar. Är halten tillräckligt hög kan inandning leda till medvetslöshet och till och med döden.

Koldioxiden är med sin molmassa 44 g/mol tyngre än syrgas (32 g/mol) och kvävgas (28 g/mol). Därför sjunker koldioxiden ner mot marken om den släpps ut. Med tiden diffunderar koldioxiden och blandar sig med luften till dess halten är lika överallt, men det tar ett tag.

Koldioxid underhåller inte förbränning. Den kväver därför eld. Så kallade kolsyresläckare innehåller koldioxid under högt tryck. De fungerar genom att koldioxiden tränger undan luftens syre så att elden slocknar.

Kolsyresnö och torris är koldioxidid fast form

Kolsyresnö och torris är en benämning på frusen koldioxid. Torris är kolsyresnö som har komprimerats så att den blivit kompakt.

En bit torris ångar och ryker i rumstemperatur när koldioxiden sublimerar, dvs. övergår direkt från fast till gasform. Kylan gör att luftens fuktighet kondenserar så att synlig dimma bildas.

Man kan lägga ner bitar av torris i bål (som man dricker) för att få en festligt effekt. Torrisen kolsyresätter samtidigt drycken. Var bara försiktig att så att du inte sätter en bit torris i halsen. Den är nämligen mycket kall, - 78,5 °C. Tag aldrig i torris med händerna!

Ett recept för att tillverka dimma är att släppa ned torris i varmt vatten. Vattnet får torrisen att sublimera till gas snabbare, men bildas dimma av vattendroppar.

Kolsyresnö bildas också när man använder en kolsyresläckare. Brandsläckaren innehåller komprimerad koldioxid under högt tryck. När man släpper ut gasen sjunker temperaturen hastigt och så mycket att koldioxiden fryser till kolsyresnö vid –78,5 °C. Förutom att koldioxiden kväver elden så bidrar kyleffekten till att elden minskar i intensitet.

Tillverkning och användning

Koldioxid fås bland annat som biprodukt vid förbränning av kolhaltiga bränslen och vid upphettning av naturliga karbonat, särskilt vid "kalkbränning" (upphettning av kalciumkarbonat, kalksten). Kalkbränningen ger bränd kalk, (kalciumoxid, CaO):

CaCO3(aq) CaO(s) + CO2(g)
kalciumkarbonat kalciumoxid koldioxid

Den bildade koldioxiden renas och kondenseras, och kan också överföras till kolsyresnö som i sin tur kan pressas till torris.

Gasformig koldioxid används vid framställning av kolsyrade drycker och eldsläckningsanläggningar, medan torris främst används till kylning, till exempel när glass ska transporteras.

En mycket speciell tillämpning är koldioxidlasrar där koldioxiden fungerar som medium för ljusstrålen när den fås att svänga i fas. Koldioxidlasern producerar ljus i det infraröda området vid våglängderna 9,4 och 10,6 mikrometer (μm)

Ett oorganiskt ämne med stor biologisk betydelse

Koldioxiden ingår i kolets kretslopp i naturen. Alla organismer som förbrukar syre i cellandningen producerar koldioxid. Människan andas, liksom djuren, in luftens syre som transporteras ut i kroppen via blodet till cellerna där förbränningen av maten sker. Maten bryts ned till bland annat koldioxid och vatten. Blodet transporterar koldioxiden tillbaka till lungorna och vi andas sedan ut den.

C-föreningar + O2(g) H2O + CO2(g) + energi
kolföreningar syrgas vatten koldioxid energi

I växterna sker den motsatta processen, att bladen tar upp koldioxid som med hjälp av energin från solljuset reagerar med vatten. Då bildas bland annat sockerarter. Restprodukt vid fotosyntesen är syrgas som avges via bladens klyvöppningar.

H2O + CO2(g) + energi C-föreningar + O2(g)
vatten koldioxid energi kolföreningar syrgas

På detta sätt vandrar kolet i ett kretslopp mellan växter och djur. Kolet är i form av koldioxid när det finns i luften. Men i organismerna binds kolet upp i organiska föreningar såsom stärkelse, socker, fetter och proteiner. Koldioxid betecknas som ett oorganiskt ämne, dvs. ett ämne som inte är biologiskt. Men kolet från koldioxiden som binds i organiska föreningar som har en biologisk funktion.

Ökande koldioxidhalter i atmosfären försurar haven

Genom industrialiseringen, och då speciellt förbränningen av fossila bränslen, har sura gaser bidragit till försurning. Speciellt koldioxiden har blivit ett problem. Den naturliga mängden kol i kolets kretslopp har fyllts på med kol från de fossila bränslena som har legat i tryggt förvar i jorden. Koldioxidhalten i atmosfären har ökat dramatiskt.

Försurningen sker när koldioxid som löser sig i vattnet bildar kolsyra. Kolsyra får kalken i korallrev och i djur med kalkskelett att lösas upp. Effekterna är så stora att hela ekosystem är på väg att slås ut.

Ökande koldioxidhalter i atmosfären orsakar global uppvärmning

Eftersom koldioxid är en så kallad växthusgas, så orsakar ökningen av koldioxid i atmosfären en förstärkt växthuseffekt. Beräkningar växthuseffekten måste ta hänsyn till många komplicerade samband. Därför har forskarna av ren försiktighet undvikt att komma med kategoriska påstående om hur kraftig effekten är. Men när nu växthuseffekten har slagit till på allvar kan vi se att den är långt kraftigare än förväntat. Det finns inte heller någon tvekan om att den globala uppvärmningen till allra största delen är orsakad av människans verksamhet som ökat på koldioxidhalten i atmosfären.

Koldioxid i form av vätekarbonat stabiliserar pH

Medan koldioxiden transporteras av blodet reagerar det med vattnet som finns i blodet och bildar kolsyra, vätekarbonat och karbonat. Nästan all koldioxid är i form av vätekarbonat i blodet. Det beror på att blodets pH ligger på cirka 7,4. Vätekarbonatet hjälper till att stabilisera blodets pH så att det inte ska variera alltför mycket. Detta är viktigt för att vi ska må bra. Kroppens reglering och vätekarbonatets pH-buffrande verkan gör att blodet pH håller sig mellan 7,35 och 7,45.

Koldioxiden har också en motsvarande bufferteffekt på pH i naturen. Ett problem är dock att i första reaktionsstegen när koldioxiden reagerar med vatten, så bildas kolsyra. Kolsyran sänker pH. Det är först när en del av kolsyran förbrukas av bas, till exempel i reaktionen med kalk, som det pH-buffrande vätekarbonatet bildas. Ökande koldioxidhalter i luften bidrar därför till försurning av hav och vattendrag.

Koldioxid deponerad som mineraler

På planeterna Venus och Mars är koldioxid den vanligaste gasen. I torr luft på planeten Jorden är koldioxid den fjärde vanligaste gasen näst efter kväve, syre och argon. När de stora oceanerna bildades flyttades en stor del av koldioxiden från den tidiga atmosfären till vattnet där den löstes upp. Nu återfinns stora delar av den tidigare koldioxiden som karbonater i berggrunden.

Av allt kol som finns på jorden är bara en mycket liten del som fri koldioxidgas i atmosfären. Koldioxiden i luften står i jämvikt med koldioxid i vattenlösning. Koldioxiden i vattnet reagerar till kolsyra som reagerar vidare till vätekarbonat (HCO3) och karbonat (CO32–). Karbonatjonerna bildar svårlösliga salter tillsammans med till exempel kalciumjoner (Ca2+) och faller ut som fasta mineraler. Det mesta kolet är bundet i berggrunden som karbonater, men också som en försvinnande liten andel fossil stenkol, brunkol, olja och naturgas. Dessutom har vi kol som är bundet som biomassa i ekosystemen, inklusive förmultnande material i marken.

Fördelningen är följande:

PlaceringVikt kolAndel
atmosfären7,5·1011 ton0.001%
ekosystem2,1·1012 ton0.002%
haven3,8·1013 ton0.038%
berggrunden1,0·1017 ton99.959%

Koldioxid som superkritisk vätska

Vid tillräckligt högt tryck och temperatur övergår gaser till att bli superkritiska vätskor. Tillståndet är något som kan betecknas både som gas och vätska samtidigt. Molekylerna är rörliga nästan som i en gas, dvs diffunderar snabbt. Samtidigt är förmågan att lösa ämnen god, som i en vätska. Dessa egenskaper är till god nytta vid superkritisk extraktion. För koldioxid inträffar det superkritiska tillståndet vid 73,76 bars tryck och en temperatur av endast 31,04 °C. Det gör koldioxiden mycket lämpad för användning som superkritisk vätska.

Luftens löslighet i vatten

Luften innehåller framför allt kvävgas och syrgas, men även små mängder av argon och koldioxid. Gaserna i luften har en viss löslighet i vatten. Lösligheten beror på vilken gas det är. Koldioxiden har en särskilt hög löslighet i vatten.

Men koncentrationen av gasen i luften påverkar också hur mycket som löser sig i vattnet. Gasen i luften och gasen i löst form i vattnet står i jämvikt. Ju mer det finns i luften, desto mer löser sig i vattnet.

I vattnet finns därför mest kvävgas, därefter syrgas och sedan löst koldioxid. Koldioxiden reagerar också med vattnet och bildar kolsyra.

Salthalten i vattnet minskar gasernas löslighet. Därför är det lite mindre lösta gaser i havsvatten än i sötvatten.

Temperaturen är också viktig. Gasernas löslighet minskar snabbt med ökande temperatur. Det kalla vattnet vintertid kan innehålla betydligt med syre än det varma sommarvattnet. Vissa fiskarter, såsom laxfiskarna, är särskilt syrekrävande. De klarar sig därför inte i varma vatten.

Henrys lag

När man ska räkna på löslighet av gaser i en vätska används med fördel Henrys lag. Till exempel för att få reda på koncentrationen av syrgas i vattnet i en sjö eller koldioxidhalten i blodplasman. Lagen lyder: Vid konstant temperatur är lösligheten av en gas i en vätska proportionell mot gasens tryck. För ämnet A gäller

pA = kA·cA
där pA gasens ångtryck över lösningen, cA är koncentrationen av löst gas A och kA är en proportionalitetskonstant som är beroende av lösningsmedlet och det som ska lösas.

För koldioxid är värdet på kA = 2,98·106 dm3Pa/mol när lösningsmedlet är vatten vid 25 °C.

Koldioxiden har särskilt hög löslighet i vatten

Koldioxid är i rumstemperatur en färglös gas som är 1,5 gånger tyngre än luft vid samma tryck och temperatur. Gasen är doftlös och har en sur smak. Smaken uppkommer då koldioxid reagerar med saliv och bildar kolsyra (H2CO3). Koldioxid är den stabilaste av kolets oxider och är slutprodukten när kol och koloxider reagerar med luft eller syre. Koldioxiden lär lättlöslig i vatten. Vid 15 °C och normalt lufttryck kan man lösa nästan 1 liter koldioxid i 1 liter vatten om man har ren koldioxid ovanför vattenytan.

gas andel i luft andel i vatten
N2 78 % 51 %
O2 21 % 31 %
CO2 0,038 % 18 %

Av luftens gaser är det framför allt kväve, syre och koloxid som löser sig i vattnet. Koldioxiden är den överlägset mest lösiga gasen i vatten, syre därnäst och kväve minst. Lösligheten av "luft" ger dock omvända ordningsföljden därför att den lösta gasen i vattnet står i jämvikt med samma gas i luften. Eftersom halten koldioxid i luften bara är 0,038 %, så blir trots allt halten koldioxid i vattnet ganska liten. I luften finns 78 % kvävgas och 21 % syrgas, vilket gör att trots marginellt lägre löslighet för kvävgas i vatten än för syrgas, så är den absoluta halten kvävgas i vattnet högre.

En anledning till att koldioxid löser sig förhållandevis bra i vatten är att den reagerar med vattnet och bildar en svag tvåprotonig syra, kolsyra (H2CO3). Syran protolyseras sedan vidare till vätekarbonat (HCO3) och karbonatjoner (CO32−). Vi har alltså kopplade jämvikter mellan luftens koldioxid och karbonatet som bildas i lösningen:

CO2(g) ⇄ CO2(aq) ⇄ H2CO2(g) ⇄ HCO3 ⇄ CO32−

Det är dock bara en liten del av syran som protolyseras när koldioxid löser sig i rent vatten, större delen av kolsyran finns löst som CO2(aq). Men om vattnet är basiskt ökar lösligheten dramatiskt. Kolsyran neutraliseras nämligen av basen och jämvikten drivs kraftigt åt höger.

Temperaturberoendet hos gasers löslighet

Lösligheten av koldioxid, och andra gaser är beroende inte bara av trycket, utan även av temperaturen. I vatten gör lägre temperatur att lösligheten för gasen ökar.

Luftens löslighet i sötvatten vid olika temperaturer.
Koldioxiden (trianglar) har oproportionerligt hög löslighet med tanke på hur låga halterna är i atmosfären. Men man kan också se en trend att koldioxidens löslighet blir relativt sett sämre vid högre temperatur. Vid 0 °C är lösligheten 50% av syrets, men vid 50 °C är den bara 30% av syrets löslighet i vatten.
Bild © Svante Åberg

Lösligheten för gaserna minskar kraftigt med temperaturen, se diagrammet ovan. När man värmer upp vattnet drivs gaserna ut. De första bubblorna man ser när vattnet börjar sjuda är lösta gaser som inte kan hållas kvar lösta i vattnet på grund av stigande temperatur. När vattnet kokar, är det inte gaser som avgår utan vatten som omvandlas till vattenånga och bubblar upp.

När vatten värms upp utan att gaserna får möjlighet att avgå bildas en övermättad lösning. Det vill säga vattnet håller mer gas än vad som möjligt. Detta är vad som sker när man värmer vatten i mikrovågsugnen till 100 grader. Då skulle normalt så gott som all gas vara löst ur vattnet. Men i en mikrovågsugn värms vattnet lika mycket i hela koppen och då cirkulerar inte vattnet och gaserna kommer inte upp till ytan och kan inte avges. Därför kan det brusa om till exempel en tepåse, eller om man rör i en kopp med vatten som blivit värmd i mikrovågsugnen. Detta skiljer sig mot att värma vatten i en kastrull, då cirkulerar vattnet på grund av att det är varmare i mitten av kastrullen än på kanterna. Varmt vatten stiger, svalnar något och sjunker längs med sidorna på kastrullen. Cirkulationen gör att gaserna hela tiden kan avges till luften ovanför.

Observera att sambandet att lösligheten minskar med ökande temperatur gäller i vatten, men inte i organiska lösningsmedel. I organiska lösningsmedel ökar lösligheten för gaserna med temperaturen.

Övermättad lösning

Ett exempel på övermättad lösning är när man kokar vatten i en mikrovågsugn. När du sedan stoppar ned tepåsen, så kanske du upptäcker att det börjar skumma. Det är överskottet av lösta gaser som avgår. Vattnet blev övermättat på gas genom att lösligheten för gaserna minskade när temperaturen ökade.

Försurning av haven

Halterna i atmosfären

Koldioxidhalten i atmosfären är mycket låg, bara cirka 0,04 %, men har ändå stor betydelse i miljön. Dels är koldioxiden en växthusgas som höjer jordens temperatur, dels löser sig koldioxid lätt i vattnet och bildar kolsyra.

Halterna koldioxid i luften har ökat sedan industrialismen slog igenom och fortsätter att öka. Anledningen är att vi använder fossila bränslen som tidigare var gömda i marken och inte kom ut i atmosfären, men som nu adderas till den koldioxid som naturligt förekommer som en del av kolets kretslopp mellan växter och djur.

Löslighet och pH i vatten

Lösligheten för koldioxid i vatten är hög därför att den kolsyra som bildas när den reagerar med vattnet sedan reagerar vidare och bildar vätekarbonat. Jämviktsprocesserna gör att det då frigörs plats för att ytterligare koldioxid ska lösa sig och bilda kolsyra. Eftersom kolsyran är en syra sänks pH i vattnet, det blir surare.

Organismer med kalkskelett påverkas

I havet lever många organismer med kalkskelett. Kalken är kemiskt sett kalciumkarbonat, ett basiskt ämne. Karbonatet i skelettet står i jämvikt med löst karbonat i vattnet. Jämvikten innebär att kalken i skelettet både avger och tar emot karbonatjoner från vattnet. Men när vattnet är surt förbrukas karbonat och bildar vätekarbonat, som är en något surare form av karbonat. Detta minskar tendensen för karbonat att bindas till kalkskelettet. Resultatet blir att organismens skelett har svårt att växa till och djuret lider, överlever kanske inte.

Exempel på djur med kalkskelett är musslor, krabbor, koraller, med flera. Speciellt korallreven är illa ute. De utsätts dels för surare vatten, dels för förhöjda temperaturer som de inte tål. Dessutom är korallreven mycket långlivade kolonier som byggs upp under tusentals år och som inte klarar plötsliga förändringar i miljön.

Korallreven är mycket viktiga ekologiska system som ger skydd och underlag för otaliga arter av djur och växter. Den biologiska produktionen på reven är mycket stor. Om reven dör, så försvinner till exempel en stor del av fisken i haven.

Kolets kretslopp i havet och atmosfären

Det uppskattas att cirka 30-40 % av människans utsläpp av koldioxid absorberas av haven och andra vattendrag. Under perioden mellan år 1751 och 1996 beräknar man att ytvattnet i haven har minskat sitt pH från cirka 8,25 till 8,14. Det motsvarar en ökning av vätejonhalten [H+] med 35 %.

Det finns ett ständigt utbyte av koldioxid i sina olika former mellan atmosfären och havet, mellan vatten på olika djup, och mellan sedimenterat och löst kol. Man brukar talar om "koldioxidens biologiska och fysikaliska pumpar".


CO2-cykeln i havet och atmosfären.
CC BY-SA 2.5

Syra-basreaktion

Syror och baser kan beskrivas som varandras motsatser. Det är nämligen så att en syra ger bort en vätejon, men en bas tar i stället emot en vätejon. Detta gör att syror och baser lätt reagerar med varandra. Man får en så kallad syra-basreaktion.

Ett annat namn för syra-basreaktion är protolys. En väteatom består av en proton i kärnan och en elektron i skalet. När vätet förlorat sin elektron och bildat en vätejon, så återstår bara protonen. Vätejon och proton är därför samma sak.

Ordet "lys" är grekiska och betyder sönderfall. När syran avger sin vätejon sönderfaller den i vätejon + den rest som blir kvar. "Proton" och "sönderfall" ger därför ordet protolys.

Neutralisation


Syra och bas reagerar i neutralisation.
Bild: Svante Åberg

Eftersom syror och baser är varandras motsatser, så har de en förmåga att förbruka varandra när de reagerar. Vid reaktionen förbrukas lika mycket syra och bas. De ämnen som i stället bildas är ofta salt och vatten, men inte alltid. Här är två exempel.

Exempel 1: HCl(aq) + NaOH(aq) → H2O(l) + Na+ + OH

Natriumjonerna och hydroxidjonerna ger saltet natriumkorid, dvs. vanligt koksalt. I syra-basreaktionen bildas också vatten.

Exempel 2: HCl(aq) + NH3(aq) → Cl + NH4+

Ammoniumjonerna och kloridjonerna ger saltet ammoniumklorid, dvs. salmiak. I denna syra-basreaktion bildas inget vatten.

Definition av syror och baser som protongivare och protontagare

syra = protongivare
bas = protontagare

Arrhenius definierar syra som protongivare

Den som först kom med en definition av syror och baser var den svenske kemisten Svante Arrhenius, vilket han fick Nobelpriset för år 1904. Arrhenius visade på förekomsten av vätejoner i vattenlösning av syror. Han definierade en syra som ett ämne som dissocieras (sönderdelas) i vatten så att vätejoner (H+) bildas.

Brønsted och Lowry definierar bas som protontagare

Den danske kemisten Johannes Nicolaus Brønsted och den engelske kemisten Martin Lowry kompletterade sedan, oberoende av varandra, teorin genom att definiera bas som protontagare. De insåg att baser har förmågan att deprotonera syror, dvs. plocka protoner från syror. Nu hade man en komplett teori som definierade syra och korresponderande bas som samma partikel, förutom skillnaden på en proton.

Syrans reaktion i vattenlösning

En generell beteckning för en syra är HA. H står för grundämnet väte, men A är en beteckning som syftar på syra (engelska Acid). Exempelvis kan HA beteckna väteklorid ,HCl, eller ättiksyra, CH3COOH.

Dissociationen av syran HA sker med reaktionsformeln:
HA → H+ + A

Vi ser att syran HA ger bort sin proton och kvar blir A. Syran HA är alltså en protongivare.

Den frigjorda vätejonen reagerar sedan omedelbart med vatten och bildar en oxoniumjon:
H+ + H2O → H3O+

Basens reaktion i vattenlösning

Basen B har förmågan att ta emot en vätejon (proton). I vattenlösning kommer vätejonen från en vattenmolekyl som har sönderdelats med reaktionsformeln:
H2O → H+ + OH

Den frigjorda vätejonen tas emot av basen i reaktionen:
H+ + B → BH+

Samtidig syra-basreaktion

Protonöverföringen kan ske direkt från syran till basen i en reaktion med formeln:
HA + B → A + BH+

En sådan typ av reaktion kallas för protolys.

Reaktionen kan också ske åt motsatt håll, dvs. att BH+ fungerar som syra när den ger en proton till A som då fungerar som bas:
A + BH+ → HA + B

Som synes kan även joner vara syror och baser, såsom att A är en bas och BH+ är en syra.

Korresponderande syra-baspar

När en vätejon avges av en syra måste det alltid finnas en bas som tar emot den. Det är nämligen så att vätejoner inte kan existera fria. När det samtidigt är så att syran blir en bas när den avger sin vätejon, och basen blir en syra när den tar emot en vätejon, så kan man alltid beskriva syra-basreaktionen på följande sätt:

HA1 + A2 A1 + HA2
syra 1 bas 2 bas 1 syra 2

I reaktionen har vi syra-basparen:
syra 1 ⇄ bas 1 + H+
syra 2 ⇄ bas 2 + H+

Nedan ges några exempel på syra-basparen i ett antal syra-basreaktioner:

syra 1 bas 2 bas 1 syra 2
HCl(aq) + NH3(aq) Cl + NH4+
CH3COOH(aq) + H2O(l) CH3COO + H3O+
CH3COOH(aq) + OH CH3COO + H2O(l)
H2O(l) + NH3(aq) OH + NH4+
H2O(l) + H2O(l) OH + H3O+

Den sista reaktionen i tabellen är intressant för att den visar att vatten kan reagera med sig själv. Denna reaktion kallas vattnets autoprotolys.

Lewis definition av syra som elektrontagare och bas som eletrondonator

syra = tagare av elektronpar
bas = givare av elektronpar

Gilbert N. Lewis definierade syra-basreaktioner som elektronöverföringar ungefär samtidigt som Brønsted och Lowry jobbade med sin definition av protolys.

För Lewis var en bas ett ämne som kunde donera ett elektronpar. En syra var då ett ämne som kunde ta emot ett elektronpar. Lewis definition av syror och baser är en bredare definition som även kan tillämpas på ämnen som inte innehåller väte. Exempelvis är bortrifluorid, BF3, en Lewis-syra som kan reagera med Lewis-basen fluorid, F:
BF3 + F → BF4.

Koldioxid-karbonatsystemet

Koldioxid tillsammans med vatten ingår i en serie former av kolsyra och karbonater som står i jämvikt med varandra. Förutom koldioxid och vatten som bildar kolsyra finns också syra-basjämvikterna mellan kolsyran och dess salter. Vi har följande:

CO2(g) CO2(aq) löslighetsjämvikt
CO2(g) + H2O(l) H2CO3(aq) jämvikt för bildning av kolsyra
H2CO3(aq) HCO3 + H+ syra-basjämvikt
HCO3 CO32– + H+ syra-basjämvikt

Den första jämvikten är en löslighetsjämvikt där koldioxidgas löser sig i vatten. Den andra jämvikten är en reaktion mellan koldioxid och vatten som bildar kolsyra. Den tredje och fjärde jämvikten är syra-basjämvikter där vätejoner ingår.

Alla dessa jämvikter är kopplade. Det innebär att en förändring i halten koldioxid i atmosfären fortplantar sig genom hela systemet så att till exempel halterna vätekarbonat och karbonat också påverkas.

Men eftersom vätejonerna också ingår i jämvikterna, så påverkas koldioxid-karbonatsystemet av sura och basiska ämnen i lösningen. pH är därför en viktig faktor.

Beräkningsexempel på koldioxid i jämvikt med vatten

Vi ska göra beräkningar på jämvikten mellan koldioxid i luften och kolsyra och karbonater i vatten. Värdena gäller för sötvatten vid rumstemperatur. Det är viktigt att känna till att jämviktskonstanterna är starkt beroende av temperatur och salthalt. Därför blir värdena annorlunda om man ska räkna på havsvatten eller kallare vatten.

Jämvikten mellan koldioxid i luften och i vattnet

Henrys lag tillämpad på koldioxid lyder KH = PCO2/[CO2(aq)] = 29,41 atm/(mol dm–3)

Koldioxidhalten 0,0387 % i luften vid 1 atmosfär ger PCO2 = 3,87·10-4 atm

Koncentrationen löst koldioxid i vattnet är då [CO2(aq)] = PCO2/K = 3,87·10-4 atm / (29,41 atm/(mol dm–3)) = 1,316·10-5 mol dm–3 ≈ 1,3·10-5 mol dm–3

Jämvikten mellan löst koldioxid i vattnet och kolsyra

Jämviktskonstanten för bildningen av kolsyra är K = [H2CO3(aq)]/[CO2(aq)] = 1,3·10-3

Halten kolsyra blir då [H2CO3(aq)] = [CO2(aq)] · 1,3·10-3 = 1,316·10-5 mol dm–3 · 1,3·10-3 = 1,711·10-8 mol dm–3 ≈ 1,7·10-8 mol dm–3

Första protolyssteget av kolsyran

Jämviktskonstanten för bildningen av vätekarbonat ur kolsyran är KA1 = [H+][HCO3]/[H2CO3(aq)] = 2,00·10-4 mol dm–3

Halten vätekarbonat blir då [HCO3] = 2,00·10-4 mol dm–3 · [H2CO3(aq)] / [H+]) = 2,00·10-4 mol dm–3 · 1,711·10-8 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / [H+]

Antag att pH är 8,14, vilket innebär [H+] = 10-8.14 mol dm–3

Vi får [HCO3] = 3,421·10-12 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / (10-8.14 mol dm–3) = 4,723·10-4 mol dm–3 ≈ 4,7·10-4 mol dm–3

Andra protolyssteget av kolsyran

Jämviktskonstanten för bildningen av karbonat ur vätekarbonatet är KA2 = [H+][CO32–]/[HCO3] = 4.69·10-11 mol dm–3

Halten karbonat blir då [CO32–] = 4,69·10-11 mol dm–3 · [HCO3] / [H+] = 4,69·10-11 mol dm–3 · 4,723·10-8 mol dm–3 / (10-8.14 mol dm–3) = 3,057·10-6 mol dm–3 ≈ 3,1·10-6 mol dm–3

Vatten

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.

Vattnets ovanliga egenskaper

Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.

Vattnet är tyngst vid +4 °C.
Bild: © Svante Åberg

Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.

Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.

Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).

Vattnet är livsnödvändigt

Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.

När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.

Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.

Vattnet blev referens för temperaturskalan

Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.

När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K

Vätebindningar karaktäriserar vattenmolekylen

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.

Vätebindningarna ger hög ytspänning

Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.

Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.

Vinklad molekyl ger hexagonal struktur

I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats.
Bild: © Svante Åberg

Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.

Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.

Vattnets syra-basegenskaper

Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.

Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.

Diffusion i lösning

Partiklarna rör sig slumpmässigt och spridds ut i hela volymen

Diffusion är ett resultat av partiklars slumpmässiga rörelser och leder till att partiklar sprids. Om det finns en hög koncentration av partiklar i ett område, så tenderar de att spridas till omgivningen. Det innebär att diffusionsriktningen går från områden med högre koncentration till områden med lägre koncentration. Det leder till att skillnaderna i koncentration utjämnas.

Koncentrationsgradienten påverkar diffusionshastigheten

En faktor som påverkar diffusionens hastighet är koncentrationsgradienten. Ju snabbare koncentrationen avtar i en riktning, desto snabbare blir masstransporten hos diffusionen. Det är en statistisk effekt, ett resultat av sannolikheter. Tänk dig att du har två rum med en dörr emellan. Ena rummet är fullpackat med folk, det andra är nästan tomt. Rent slumpmässigt så bestämmer sig en person av 10 att gå över till det andra rummet. Det är då många fler som lämnar det fullpackade rummet och går över till det nästan tomma än tvärtom, helt enkelt för att det inte är så många som kan gå åt motsatt håll.

Högre temperatur ger snabbare diffusion

De slumpmässiga rörelserna är i själva verket termiska rörelser, dvs. värmerörelser som beror på temperaturen. Högre värme innebär snabbare rörelser med större rörelseenergi. De snabbare rörelserna vid högre temperatur medför också att diffusionen blir snabbare.

Längre fri sträcka mellan kollisionerna ger snabbare diffusion

En partikel som kan röra sig långa sträckor innan den kolliderar och byter riktning, kan förflytta sig snabbt från en plats till en annan. I en gas är det långt mellan partiklarna. Därför är diffusionen i gaser snabb.

Men i vätskor är det mycket trångt om utrymmet, så partiklarna kolliderar i stort sett omgående när de rör sig. De byter därför riktning väldigt ofta. Det leder till att partiklarna inte förflyttar sig så snabbt från startpunkten. Diffusionshastigheten är därför väldigt mycket långsammare i vätskor än i gaser.

Diffusionen är snabb över korta sträckor, men långsam över längre avstånd

Ju längre sträcka en partikel ska förflytta sig, desto fler kollisioner som gör att den byter riktning kommer den att råka ut för. Eftersom många av kollisionerna får partikeln att röra sig åt fel håll, så saktar det ned den effektiva sträckan "fågelvägen" som faktiska tillryggläggs. Man kan visa både teoretiskt och experimentellt att diffusionssträckan är proportionell mot kvadratroten ut tiden. Det innebär till exempel att för att färdas en sträcka som är 10 gånger så lång, så måste diffusionen pågå 100 gånger så lång tid.

Indikatorn metylenblått visar hur syret från luften har träng ned i ett tunt ytskikt i vattenlösningen.
Foto: © Svante Åberg

Diffusionen i gränsskikt ger bara ett tunt lager

Den kombinerade effekten av att diffusion är relativt sett långsam i vätskor och att hastigheten snabbt avtar med avståndet gör att diffusionen i en vätskeyta inte tränger så djupt ned, utan är effektiv bara nära ytan. Om vatten syresätts från luften, så är det bara några millimeter i vattenytan som får effektiv syresättning inom några minuter. För att det syresatta vattnet ska tränga djupare ned krävs andra processer såsom konvektion, dvs. att hela vattenmassan strömmar och för med sig syret.

Innebörden av diffusionshastighet

Observera att när vi talar om diffusionshastighet, så är det inte hastigheten hos de enskilda partiklarna som avses, utan hur många partiklar per sekund som förflyttar sig en given sträcka i en viss riktning. Diffusionshastigheten blir hög främst därför att det är många partiklar som rör sig samordnat i en riktning. Att de enskilda partiklarna rör sig snabbt hjälper till, men är bara en del av förklaringen till diffusionshastigheten.

material på avancerad nivå kommer att läggas in här

Diffusion i gas

Gaspartiklarnas rörelser

Gasmolekyler är små partiklar, ≈ 10-6 mm, som rör sig med hög hastighet, ≈ 1000 m/s. Gasmolekylernas medelhastighet bestäms av temperaturen. Ju högre temperatur, desto högre rörelseenergi hos gasmolekylerna. Gaser diffunderar genom kollisioner med andra gasmolekyler.

Högre temperatur innebär större sannolikhet för kollision, per sekund räknat, med annan gaspartikel. I luft sker vid rumstemperatur i genomsnitt ca 5 miljarder kollisioner per sekund per gaspartikel. Detta betyder att gaspartikeln endast rör sig ca 100 nm mellan varje kollision. Det blir en massa kollisioner!

Kollisioner sker också oftare om koncentrationen av gaspartiklar är hög. Då stiger givetvis sannolikheten för kollision. Samtidigt som sannolikheten för kollision ökar vid en högre koncentration minskar sträckan som gasmolekylen kan färdas innan ny kollision. Ju kortare "fri" sträcka innan ny kollision desto lägre diffusionshastighet.

Gasmolekyler får anses vara "idela partiklar" i den mening att molekylerna kan ses som punktformiga partiklar utan sammanbindande krafter, dvs. utan sekundära bindningar. Detta gör att vi kan studera gasernas rörelse enhetligt oavsett vilken gas det är frågan om. Som tidigare sagt så bestämmer gasmassans temperatur molekylernas medelhastighet. Men Newtons första lag, tröghetslagen, innebär att den kraft som fodras för att ändra en kropps rörelsetillstånd är proportionell mot dess massa, vilket betyder att en tyngre partikel studsar" inte lika långt som en lättare. Detta förklarar olika diffusionshastighet hos olika gaser med olika molmassa.

Sammanfattningsvis kan sägas att hög koncentration och hög molekylvikt minskar diffusionshastigheten hos gaser vid konstant tryck och temperatur.

Diffusionen utjämnar koncentrationsskillnader

Diffusion beskrivs alltså som en rörelse som eftersträvar att utjämna koncentrationsskillnader. Tänk dig att två gaser, t.ex. brom och väte, finns i var sitt kärl separerade av en vägg. När väggen tas bort kommer kommer en del brommolekyler att av en slump att gå över gränsen till det kärl där vätet finns. Vid start finns inga brommolekyler i kärlet med väte. Brom kan inledningsvis inte vandra åt andra hållet. Det blir alltså en nettotransport av brom från kärlet med hög koncentration till det med låg.

Man kan resonera på motsvarande sätt för vätet, fast transporten sker åt andra hållet. Men även där gäller att koncentrationerna av väte utjämnas. Diffusionens koncentrationsutjämnande effekt är en rent statistisk effekt.

Bild: © Svante Åberg

Diffusionssträckor

Den skotske kemisten Thomas Graham visade 1831 att diffusionshastigheten för en gas är omvänt proportionell mot kvadratroten ur dess molekylvikt (Graham's law of diffusion). Krav är dock att omgivningens tryck och temperatur är konstanta.

Detta tillsammans med gasernas allmänna tillståndsekvation (allmänna gaslagen) gör att vi kan få ett allmänt samband mellan diffusionshastigheterna (eller snarare diffusionssträckorna) och molekylvikterna hos två olika gaser:

Med andra ord - förhållandet mellan gasernas diffusionssträckor
(d1 resp. d2) är omvänt proportionellt mot kvadratroten av gasernas molmassor. d1 avser det avstånd som gas nr 1 förflyttat sig (diffunderat) och d2 avser avståndet som gas nr 2 diffunderat.

Matematiken bakom diffusionshastigheterna och sträckorna

Molekylernas rörelseenergi (kinetiska energi) är proportionell mot massan och kvadraten på deras rörelsehastigheter. Närmare bestämt är sambandet
Ekin = ½ m v2

Om vi stuvar om i ekvationen får vi sambandet
v = (2 Ekin/m)½

Den kinetiska energin är i genomsnitt lika för alla molekyler, oberoende av massa, eftersom rörelseenergin bestäms av temperaturen. Alla partiklarna har samma temperatur.

Om vi sedan sätter index 1 och index 2 på de två gaserna med olika molekylmassa, så kan vi ta kvoten mellan de två ämnenas hastigheter och får
v2/v1 = (2 Ekin/m2)½ / (2 Ekin/m1)½
= (m1/m2)½
= [(m1 NA)/(m2 NA)]½
= (M1/M2)½
dvs.
v2/v1 = (M1/M2)½

NA är Avogadros konstant, dvs. antalet partiklar i en mol. Massan m för en partikel multiplicerat med NA ger molmassan M.

Motsvarande diffusionssträckor d är proportionella mot rörelsehastigheterna, vilket ger
d2/d1 = (M1/M2)½

Jämvikt

Jämvikt bygger på att en reaktion sker i framriktningen och tillbakariktningen samtidigt och att reaktionshastigheterna är lika stora. Det innebär att det totalt sett inte sker någon förändring, trots att reaktionerna hela tiden pågår. Man säger att jämvikten är dynamisk därför att det är en pågående process.

Med reaktionsformel så ser jämvikten mellan ämne A och ämne B ut på följande sätt:

A ⇄ B

En liknelse för att förklara jämvikten

Föreställ dig att en hink med vatten står under kranen som är öppen. Men det finns ett hål i hinkens botten där vatten rinner ut. De reaktioner vi tittar på är tillförsel av vatten till hinken (framriktningen) och bortförsel av vatten från hinken (tillbakariktningen).

Vatten utanför hinken motsvarar A i jämvikten ovan, och vatten inuti hinken motsvarar B. Vi kan då skriva jämvikten med ord på följande sätt:

vatten utanför hinken (A) ⇄ vatten inuti hinken (B)

Vi öppnar kranen

Innan vi öppnar kranen, så är hinken tom, men så snart vi öppnar kranen börjar hinken fyllas med vatten. I början är vattennivån låg och det rinner inte ut vatten genom hålet lika snabbt som vatten fylls på från kranen. Det innebär att vattennivån i hinken ökar. Jämvikten har inte ännu ställt in sig.


Vid det högre vattenflödet från kranen till hinken (höger bild), så stabiliseras vattenytan på en högre nivå.
Bild: Svante Åberg

Men ju högre vattennivån blir, desto snabbare rinner vatten ut genom hålet. Till slut rinner vatten ut lika snabbt som det fylls på.

Detta tillstånd får man vid en bestämd vattennivå i hinken som svarar mot ett visst tryck hos vattnet. Denna nivå är jämviktsnivån.

Trots att vi har pågående reaktion i framriktningen (A → B) och samtidigt i tillbakariktningen (A ← B), så är vattennivån stabil. Detta stabila tillstånd, trots pågående reaktioner, kallas dynamisk jämvikt.

Vi ändrar flödet

Om vi sedan skulle ändra kranen så att det tillförs vatten snabbare eller långsammare, så skulle vattennivån i hinken börja förändras igen. Så småningom skulle en ny jämvikt ställa in sig på en annan vattennivå.

Ett högt flöde från kranen ger en hög jämviktsnivå i hinken, ett lågt flöde ger en låg jämviktsnivå.

Exempel på jämvikter

Esterjämvikten

Man kan tillverka väldoftande luktämnen genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra → ester + vatten

Från början finns ingen ester och inget vatten, bara alkohol och syra. Reaktionen sker därför bara åt höger. Men när det väl har bildats en del ester och vatten, så börjar det ske en reaktion åt andra hållet så att alkohol och syra återbildas. Men tillbakareaktionen är långsam i början eftersom det finns så lite ester och vatten som kan reagera.

alkohol + syra ← ester + vatten (långsam i början)

Med tiden bildas det alltmera ester och vatten, vilket gör att tillbakareaktionen blir snabbare. Samtidigt minskar mängden alkohol och vatten, vilket gör att framåtreaktionen blir långsammare. Till slut är tillbakareaktionen lika snabb som framåtreaktionen. Då har dynamisk jämvikt ställt in sig.

alkohol + syra ⇄ ester + vatten

Löslighetsjämvikt

Salter är lösliga i vatten, men bara upp till en viss gräns. När saltlösningen blivit mättad, så är systemet i jämvikt. Exempel på ett salt är natriumklorid, det vill säga vanligt koksalt.

NaCl(s) ⇄ Na+ + Cl

En sak som är speciell i detta fall är att koncentrationen av salt i fast form är konstant, oberoende av hur mycket fast salt vi har. Det innebär att reaktionen i framriktningen alltid är lika snabb.

Däremot varierar koncentrationen av natriumjoner och kloridjoner. I början finns inga natrium- och kloridjoner i lösning. Då sker bara reaktionen i framriktningen.

Men ju mer natrium- och kloridjoner som går i lösning, desto snabbare blir tillbakareaktionen. Till slut faller koksalt ut lika snabbt som det går i lösning. Då har vi fått dynamisk jämvikt.

Jämviktsläget

Massverkans lag

Massverkans lag anger att när ämnen reagerar med varandra, så är reaktionshastigheten proportionell mot koncentrationen av de partiklar som reagerar. Det är en statistisk effekt som kommer av att en kemisk reaktion bara kommer till stånd om de reagerande partiklarna kolliderar. Om koncentrationen av partiklar är hög, så blir det många kollisioner per sekund. Då är det också fler partiklar som reagerar varje sekund – reaktionshastigheten blir hög.

I en jämvikt sker reaktion både i framriktningen (åt höger) och i tillbakariktningen (åt vänster). Jämviktsläget beror på reaktionshastigheten åt höger i jämförelse med den åt vänster. Jämvikt fås när hastigheten åt höger och åt vänster är lika. Det betyder att lika mycket bildas som det som förbrukas. Nettoförändringen blir noll.

Man har så kallad dynamisk jämvikt. Ordet dynamisk anger att reaktionerna hela tiden pågår. Men i och med att inga nettoförändringar sker, så har man jämvikt.

Sannolikheten för kemisk reaktion vid en kollision

Det är emellertid inte varje kollision som leder till kemisk reaktion. Kemisk reaktion innebär att bindningar bryts i den gamla partikeln och nya skapas som ger ett nytt ämne. Men oftast studsar partiklarna bort från varandra utan att reagera. Om partiklarna inte är rätt orienterade i förhållande till varandra vid kollisionen, så sker ingen kemisk reaktion.

Aktiveringsenergin måste övervinnas för att reaktion ska ske

Inte heller sker någon reaktion om kollisionsenergin är för liten. Rörelseenergin i kollisionen måste övervinna den energitröskel det innebär att bryta de gamla bindningarna. Inte förrän dessa är brutna kan nya bildas. Denna energitröskel benämns aktiveringsenergi.

När energinivåerna skiljer, så påverkar det jämviktsläget

Om ämnena på ena sidan i reaktionsformeln är energirikare än ämnena på andra sidan, så är energitröskeln olika stor för reaktionen åt höger respektive åt vänster. (Figur som visar ett sådant exempel ska infogas här.)

När framåt- och bakåtreaktionen sker olika lätt, så påverkar det jämviktsläget. Om till exempel framåtreaktionen är kraftigt exoterm, så är energitröskeln i framriktningen låg och en stor andel av kollisionerna leder till reaktion. Men då blir samtidigt energitröskeln för reaktion i bakåtriktningen hög. Det krävs en hög koncentration av partiklar i högerledet av jämviktsreaktionen för att reaktionshastigheten åt vänster ska bli lika hög som den åt höger. En starkt exoterm jämvikt brukar därför vara starkt förskjuten åt höger.

Jämviktskonstanten är ett mått på jämviktsläget

För att få ett mått på jämviktslägen behöver man få en siffra på hur den aktuella kemiska reaktionen ställer in sig. Värdet hos jämviktskonstanten K återspeglar jämviktsläget. Ju större konstanten är, desto mer förskjuten åt höger är jämvikten. Exempel på en jämvikt som är väldigt starkt förskjuten åt höger är reaktionen mellan vätgas och syrgas då vatten bildas:

2 H2 + O2 ⇄ 2 H2O, K = 3,2·1081 M–1

En jämviktskonstant som är nära noll tyder på en jämvikts som är starkt förskjuten åt vänster. Exempel på en jämvikt som är starkt förskjuten åt vänster är vattnets autoprotolys:

2 H2O ⇄ H+ + OH, K = 1,0·10–14 M2 (lösningsmedlet vatten enhetslöst)

Exempel på en jämvikt som inte är så starkt förskjuten åt någotdera hållet är esterjämvikten:

alkohol + syra ⇄ ester + vatten, K ≈ 4

Litteratur

  1. Lee R. Summerlin, Christie L. Borgford, Julie B. Ealy, Chemical Demonstrations - A Sourcebook for Teachers, Vol. 2, Second edition, p. 176, 1988, American Chemical Society, Washington, DC.
  2. Gunnar Hägg, Kemisk reaktionslära, 1977, Almqvist & Wiksell, Uppsala.
  3. Yngve Lindberg m. fl., Kemi för gymnasieskolan N, 1993, Almqvist & Wiksell, Uppsala.
  4. Christer Ekdahl, Folke A Nettelblad, Anders Pålsson, Kemi spektrum, 1998, Erlanders/Berlings förlag, Arlöv.
  5. Hans Borén, Monika Larsson, Tor Lif, Sigvard Lillieborg, Birgitta Lindh, Kemiboken A för gymnasieskolan, NV-programmet, 1998, Almqvist & Wiksell Tryckeri, Uppsala.
  6. Acid-Base Indicators and Titrations, David Dice, Carlton Comprehensive High School
    http://www.carlton.paschools.pa.sk.ca/chemical/equilibrium/abindicators.htm (2003-06-05)
  7. Acid-Base Indicators, Fred Senese, General Chemistry Online
    http://antoine.frostburg.edu/chem/senese/101/acidbase/indicators.shtml (2003-06-05)

Fler experiment


fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

gaser
Blåsa ballong med hjälp av PET-flaska
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Ett glas luft
Gasvolym och temperatur
Ljuset under glaset
Mentos-pastiller i kolsyrad läsk
Osynlig gas
Syrehalten i luft

jämvikt
Anden i flaskan
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Avdunstning och temperatur
Bestämning av antalet kristallvatten i kopparsulfat
Brus-raketen
Den frysande bägaren
Den omöjliga tvålen - den är preparerad!
Flaskor mun mot mun
Framställ väldoftande luktämnen
Fryspunktsnedsättning
Färgämnen i M&M
Gasvolym och temperatur
Gummi och lösningsmedel
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur smakar salmiak?
Innehåller koksaltet jod?
Kemi i en brustablett
Kemi i en plastpåse
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Luftfuktighet och rostbildning
Löslighet och pH - En extraktion
Maskrosen som krullar sig
Massverkans lag och trijodidjämvikten
Molnet i flaskan
När flyter potatisen?
Osmos i potatis
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Principen för dynamisk jämvikt
Reaktionshastighet med permanganat
Saltat islyft
Superabsorbenter i blöjor
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför äter vi Samarin?
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

syror och baser
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Badbomber
Brus-raketen
Den tunga koldioxiden
En märklig planta
Flaskor mun mot mun
Göra lim av kasein
Höna med gummiben?
Indikatorpärlor
Kemi i en plastpåse
Kemiskt snöfall
Löslighet och pH - En extraktion
Mentos-pastiller i kolsyrad läsk
Modellmassa av mjölk
Osmos i ett ägg
Pelargonens färg
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Regnbågens färger med Rödkåls-indikator
Saltkristaller av en aluminiumburk
Surt regn
Syror och baser i konsumentprodukter
Tag bort rostfläcken med det ämne som gör rabarber sura
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Växtfärga med rödbetor enligt receptet från Västerbotten
Älskling, jag krympte ballongen

urval gammal version av experiment
Att göra bly
Falu rödfärgspigment ur järnvitriol
Framkalla fingeravtryck med jodånga
Fruktmörade proteiner
Hur moget är äpplet?
Höna med gummiben?
Kemi med zinkjodid, del 1: Framställning
Platta yoghurtburkar
Växtfärga med rödbetor enligt receptet från Västerbotten