Tvätta i hårt vatten

Tillhör kategori: kemisk bindning, kemiska metoder, urval experiment under revidering, vardagens kemi

Författare: Eva Beckman, Svante Åberg

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Irriterande 

Tid för förberedelse: 20 minuter

Tid för genomförande: 40 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Kräver viss labvana

Introduktion

Vi använder oss av många olika tvättmedel, då vi tvättar våra kläder. De flesta av dessa är tvålbaserade. Olika tvättmedel fungerar olika bra beroende på var vi bor i Sverige. Varför är det då så?

En stor del av tvättresultatet beror på vilken vattenkvalité man har. Vattenkvalitén beror på hur hög halten av magnesium- och kalciumsalter är [1]. Laborationen visar hur vattnets hårdhet påverkar tvättresultatet.

Riktlinjer

Laborationen utförs lämpligen som elevförsök.

Säkerhet

Experimentet innehåller inga farliga moment. Alla kemikalier är tämligen harmlösa och kan spolas ned i avloppet. Den vattenfria kalciumkloriden kan dock vara något irriterande på huden (Säkerhetsmärkning Säkerhetsmärkning för vattenfri kalciumklorid).

Materiel

Förarbete

Se till att det finns kemikalier, våg och bägare på skolan. Om bägare saknas kan någon annan typ av skål eller burk användas, men då behövs även ett litersmått.

Om våg saknas kan man använda måttsatsen i köket:
1 krm (kryddmått) = 1 ml, vilket motsvarar cirka 1 gram.
1 tsk (tesked) = 5 ml, vilket motsvarar cirka 5 g.
1 msk (matsked) = 15 ml, vilket motsvarar cirka 15 g.

Gör förrådslösningar på följande sätt:

Lösning 1 (kalciumklorid)

  1. Tag 1 kryddmått kalciumklorid och lös i 50 ml vatten (50 ml = 3 msk + 1 tsk).
  2. Tag 1 ml av lösningen för att få 20 mg kalciumklorid.

Lösning 2 (citronsyra)

  1. Tag 2 kryddmått citronsyra och lös i 15 ml vatten (1 msk).
  2. Tag 1 ml av lösningen för att få 133 mg citronsyra.

Utförande

Varje laborationsgrupp blandar till sin egen saltlösning.

  1. Väg upp 20 mg kalciumklorid i en bullform, eller mät upp 1 ml av lösning 1.
  2. Lös upp det i 1000 ml destillerat vatten.
  3. Dela upp lösningen i två bägare, 500 ml i varje.
  4. Väg upp 130 mg citronsyra i en ny bullform och tillsätts i den ena bägaren, där det löses upp, eller tillsätt 1 ml av lösning 2.
  5. Den tredje bägaren fylls med destillerat vatten.
  6. Löddra upp tvål på händerna och pröva tvätta dem i de olika lösningarna.
  7. Jämför tvättresultaten. Vad är skillnaden ? Varför blir det så? Hur ser de olika lösningarna ut?
De tre bägarna
Bild: © Svante Åberg, Umeå Universitet

Variationer

Förklaring

Tvålmolekylen har ett vattenlösligt "huvud" och en fettlöslig "svans". Tvålmolekylerna lägger sig runt den feta smutsen med de vattenlösliga huvudena pekande utåt. Det gör att smuspartiklarna kan lösa sig i vattnet och lossna från huden eller tyget.

Om vattnet innehåller kalcium- eller magnesiumjoner binder de till tvålmolekylerna så att de faller ut som gråaktiga flingor. Tvålen kan då inte hjälpa till att lösa upp smutsen. Man säger att vatten med kalcium- och magnesiumjoner är "hårt".

För att mjukgöra vattnet kan man tillsätta citronsyra. Citronsyran i vattenlösning har tre negativa laddningara som binder hårt till de två positiva laddningarna i kalcium- och magnesiumjonerna. Kalcium- och magnesiumjonerna kan då inte längre binda till tvålen. Tvålen är då fri att lösa smutsen igen.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Tvål och tvättning

Miceller
Bild: © Svante Åberg, Umeå Universitet
Tvålmolekylen består av två delar. Den ena delen är liten, polär och hydrofil (vattenattraherande), medan den andra består av en lång kolkedja, en fettsyra, och är opolär och hydrofob (vattenavstötande) [2]. Det är denna tvåsidighet som gör att tvålen kan lösa fett i vatten. Det sker genom att fettsyran binder till fettsyrorna i smutsen, medan den polära delen binder till vattenmolekylerna. Smutsen löses på detta sätt. Överskottet av tvålmolekyler i vattnet förekommer mest i form av miceller där de fettälskande svansarna gömmer sig i mitten och de polära huvudena är i kontakt med det omgivande vattnet. Det är den stabilaste konfigurationen för molekylerna. [3]

Om det finns kalcium-, magnesium- eller andra flervärda metalljoner lösta i vattnet, kommer de att binda till fettsyran så den faller ut. Det är de vita flingor som bildas i bägaren med saltlösning.

Tvål består av fettsyrornas natrium- eller kaliumsalt, men eftersom kalciumjonerna (Ca2+) och magnesiumjonerna (Mg2+) har fler laddningar än natriumjonerna (Na+) och kaliumjonerna (K+) kommer kalciumet och magnesiumet att konkurrera ut natriumet och kaliumet och binda till fettsyrorna (R-COO-).

citronsyra tillsätts binder det kalciumjonerna (bildar kalciumcitrat), så att dessa inte kan reagera med fettsyran i tvålen, eftersom kalcium är tvåvärt och citronsyran är trevärd och fettsyran är envärd. Ju fler bindningar desto starkare. Alla ämnen strävar efter så starka bindningar som möjligt och av den anledningen binder kalciumet hellre till citronsyran än till fettsyran.

Definition av vattenhårdhet

Ett vatten med hög salthalt sägs vara hårt. Ju högre salthalt, desto hårdare.

Hårdheten mäts i en tysk enhet (°dH), där 1 °dH = 7,1 mg Ca eller 4,3 mg Mg eller 10,0 mg Fe per liter vatten. Vatten med en total hårdhet klassificeras på följande sätt:

0-2 °dH mycket mjukt
2-5 °dH mjukt
5-10 °dH medelhårt
10-20 °dH hårt
över 20 °dH mycket hårt

Hårt vatten i kranarna

Jonerna i hårt vatten kan vara Ca2+, Mg2+, Fe3+ eller Mn2+. Hårt vatten är ett problem eftersom det gör det svårt att tvätta när det bildas en gråaktig, kladdig fällning tillsammans med tvålen. Hårt vatten har också en sämre smak.

Att tvätta sig med tvål utan mjukmedel i ett hårt vatten kräver mer tvål, eftersom man först måste binda alla kalcium- och magnesiumjoner till fettsyror innan man kan börja tvätta sig. Om ett mjukmedel tillsätts, i den här laborationen citronsyra men ofta trifosfat eller zeolit, binds kalcium- och magnesiumjonerna upp och tvålens fettsyror är fria att binda till smutsen. Eftersom vattenkvalitén varierar i vårt land beroende på berggrunden, bör även tvättmedlen och tvålarna variera i sammansättning.

En vanlig orsak till hårt vatten är att berggrunden består av kalkhaltiga bergarter. Löst koldioxid i regnvattnet som sipprar ned genom berget löser upp kalken och frigör på så sätt kalciumjonerna i form av bikarbonat (natriumvätekarbonat):
CaCO3(s) + CO2(g) + H2O(l) → Ca2+ + 2 HCO3-(aq)

Hårt vatten kan göras mjuk genom att man tar bort de flervärda metalljonerna. En metod att åstadkomma detta är kalk-sodaprocessen. Den drar nytta av det faktum att kalciumkarbonat (CaCO3) har mycket lägre löslighet i vatten än kalciumbikarbonat (Ca(HCO3)2). Man tillsätter släckt kalk (kalciumhydroxid, Ca(OH)2) och soda (natriumkarbonat, Na2CO3). Följande reaktioner sker:
HCO3-(aq) + OH-(aq) → CO32-(aq) + H2O(l)
Ca2+(aq) + CO32-(aq) → CaCO3(s)
Mg2+(aq) + 2 OH-(aq) → Mg(OH)2(s)

Vad innehåller ett vanligt tvättmedel?

Tvättmedel är en stor kommersiell artikel. Tvättmedlet ska kunna lösa feta fläckar och proteiner. Löst smuts ska inte binda till tyget igen. Det ska fungera i hårt vatten. Man tillsätter optiskt vitmedel för att tvätten ska se renare ut och ibland ingår parfym. Tvättmedelt ska inte ge allergiska reaktioner. Det ska vara miljövänligt så att det inte orsakar övergödning i naturen eller påverkar pH alltför mycket. Nedan ser du en lista över de vanlia ingredienserna och vad de har för funktion.

Kalciumklorid

Kalciumklorid kan ha olika mycket kristallvatten. Den förekommer som vattenfri kalciumklorid (CaCl2). Den vattenfria kalciumkloriden kan erhållas genom försiktig upphettning av saltet med kristallvatten.

Den förekommer även med kristallvatten som kalciumklorid monohydrat (CaCl2.H2O), kalciumklorid dihydrat (CaCl2.2 H2O) och kalciumklorid hexahydrat (CaCl2.6 H2O).

Dihydratet är tillräckligt delikvescent (blir fuktigt när det tar upp vatten från luften) för att vara dammbindande och används därför som vägsalt [5].

Den vattenfria kalciumkloridens förmåga att ta upp vatten från luften utnyttjas i s.k. "torrbollar" som säljs i affärerna och i tekniska sammanhang för torkning av gaser och organiska lösningsmedel. Man kan också ibland hitta små påsar med saltet tillsammans med fuktkänslig utrustning i förpackningar när man handlat.

Kalciumklorid kan också användas i köldblandningar och kan teoretiskt ge så låg temperatur som -55 °C [5].

Fördjupning

Tvätt och rengöring

Smuts innehåller ofta feta ämnen, var sig det är matrester på tallriken eller fläckar på kläderna. Fetter har mycket låg löslighet i vatten. Det är därför svårt att få rent genom att bara tvätta i vatten.

Men om man tillsätter disk- eller tvättmedel, så blir det stor skillnad. Det finns flera namn för denna typ av ämnen:

amfifil = ämne med en hydrofil och en hydrofob del
detergent = ämne som rengör
tensid = ämne som sänker ytspänningen
ytaktivt ämne eller surfaktant = ämne som lägger sig i fasgränsytor

Disk- och tvättmedelsmolekyler är amfifiler


Detergentmolekylerna bäddar in fettpartiklar så att de får en hydrofil yta. Då blir de "vattenlösliga" och kan sköljas bort.
Bild: Svante Åberg

Gemensamt för sådana molekyler är att de dels har en hydrofob (vattenskyende) del, ofta i form av en kolvätekedja, dels en hydrofil (vattenälskande) grupp i andra änden. Den hydrofoba svansen är fettlöslig samtidigt om det hydrofila huvudet är vattenlösligt.

Amfifilen är ytaktiv

Detergenten sätter sig spontant i gränsskiktet mellan fett och vatten. Då hamnar den fettlösliga delen i det opolära fettet samtidigt om den vattenlösliga delen har kontakt med det polära vattnet.

Det leder till att fettpartiklar bäddas in i ett lager av amfifilen där molekylernas polära huvuden pekar ut mot vattenlösningen.

Amfifilen gör fettpartiklarna "vattenlösliga"


En dispersion (emulsion) av fettpartiklar i vatten stabiliseras av emulgeringsmedlet, som är ett ytaktivt ämne.
Bild: Svante Åberg

Inbäddade fettpartiklar med en hydrofil yta kan börja sväva i vattenlösningen. Det handlar inte om äkta löslighet eftersom blandningen inte är på molekylnivå, utan med större partiklar. Varje fettpartikel utgör en egen fas skild från vattenfasen.

En sådan blandning av olösliga partiklar i en vätska kallas dispersion. Ett annat namn är emulsion. Vid tvättprocessen är fettpartiklarna små droppar medan vattenlösningen är en kontinuerlig fas som omger fettpartiklarna.

Mekanisk bearbetning underlättar tvättprocessen

Det krävs att fettpartiklarna är små för att man ska få en dispersion. Mekanisk bearbetning slår sönder fettet i mindre delar. Då kommer amfifilmolekylerna åt att bädda in fettpartiklarna.

Fyra typer av detergenter

Detergenter är amfifiler med en opolär del och en polär.

Den opolära "svansen" är alltid ett kolväte, eller möjligen ett par kolvätekedjor. Kolväten är typiskt opolära ämnen som skyr vatten. Ju längre kolvätet är, desto mer opolära egenskaper får molekylen som helhet. Vanligtvis är kolvätekedjan ganska lång.


Klasser av ytaktiva ämnen: icke-joniska, anjoniska, katjoniska och zwitterjoniska
"Tenside haben hyrophile und hydrophobe Enden" av Roland.chem" (CC BY-SA 3.0)

Det polära "huvudet" kan vara av olika typer. På tvättmedels- eller diskmedelsförpackningen brukar den ungefärliga sammansättningen av de olika typerna vara angiven.

Icke-joniska detergenter

Icke-joniska detergenter har en polär grupp som inte är en jon.

Ett vanligt exempel är PEG, polyetylenglykol, som har formeln H−(O−CH2−CH2)n−OH. OH-gruppen är oladdad, men starkt polär på grund av att den höga elektronegativiteten hos syreatomen attraherar elektronmolnet från väteatomen så att syreatomen får en negativ och väteatomen för en positiv nettoladdning.

Anjoniska detergenter

Anjoniska detergenternas polära grupp är en negativ jon. Typiska detergenter är alkylbensensulfonater med den allmänna formeln R–C6H4–SO3, där R är en kolvätekedja.

Exempel är natriumsaltet av dodekylbensensulfonat, C12H25-C6H4-SO3Na.

Katjoniska detergenter

Katjoniska detergenter liknar anjoniska sådana, men den polära gruppen utgörs i stället av en positiv jon. Jonen kan vara ett ammoniumsalt (R-NH4+) eller ett kvarternärt ammoniumsalt (R4N+).

Zwitterjoniska detergenter

En zwitterjon är en positiv och en negativ jon på samma molekyl. Den katjoniska delen är en primär, sekundär eller tertiär amin eller en kvaternär ammonium-katjon. Den anjoniska delen är ofta sulfonat eller ammonium-karboxylat, men det finns många varianter.

Vatten

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.

Vattnets ovanliga egenskaper

Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.

Vattnet är tyngst vid +4 °C.
Bild: © Svante Åberg

Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.

Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.

Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).

Vattnet är livsnödvändigt

Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.

När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.

Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.

Vattnet blev referens för temperaturskalan

Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.

När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K

Vätebindningar karaktäriserar vattenmolekylen

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.

Vätebindningarna ger hög ytspänning

Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.

Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.

Vinklad molekyl ger hexagonal struktur

I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats.
Bild: © Svante Åberg

Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.

Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.

Vattnets syra-basegenskaper

Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.

Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.

Koldioxid-karbonatsystemet

Koldioxid tillsammans med vatten ingår i en serie former av kolsyra och karbonater som står i jämvikt med varandra. Förutom koldioxid och vatten som bildar kolsyra finns också syra-basjämvikterna mellan kolsyran och dess salter. Vi har följande:

CO2(g) CO2(aq) löslighetsjämvikt
CO2(g) + H2O(l) H2CO3(aq) jämvikt för bildning av kolsyra
H2CO3(aq) HCO3 + H+ syra-basjämvikt
HCO3 CO32– + H+ syra-basjämvikt

Den första jämvikten är en löslighetsjämvikt där koldioxidgas löser sig i vatten. Den andra jämvikten är en reaktion mellan koldioxid och vatten som bildar kolsyra. Den tredje och fjärde jämvikten är syra-basjämvikter där vätejoner ingår.

Alla dessa jämvikter är kopplade. Det innebär att en förändring i halten koldioxid i atmosfären fortplantar sig genom hela systemet så att till exempel halterna vätekarbonat och karbonat också påverkas.

Men eftersom vätejonerna också ingår i jämvikterna, så påverkas koldioxid-karbonatsystemet av sura och basiska ämnen i lösningen. pH är därför en viktig faktor.

Beräkningsexempel på koldioxid i jämvikt med vatten

Vi ska göra beräkningar på jämvikten mellan koldioxid i luften och kolsyra och karbonater i vatten. Värdena gäller för sötvatten vid rumstemperatur. Det är viktigt att känna till att jämviktskonstanterna är starkt beroende av temperatur och salthalt. Därför blir värdena annorlunda om man ska räkna på havsvatten eller kallare vatten.

Jämvikten mellan koldioxid i luften och i vattnet

Henrys lag tillämpad på koldioxid lyder KH = PCO2/[CO2(aq)] = 29,41 atm/(mol dm–3)

Koldioxidhalten 0,0387 % i luften vid 1 atmosfär ger PCO2 = 3,87·10-4 atm

Koncentrationen löst koldioxid i vattnet är då [CO2(aq)] = PCO2/K = 3,87·10-4 atm / (29,41 atm/(mol dm–3)) = 1,316·10-5 mol dm–3 ≈ 1,3·10-5 mol dm–3

Jämvikten mellan löst koldioxid i vattnet och kolsyra

Jämviktskonstanten för bildningen av kolsyra är K = [H2CO3(aq)]/[CO2(aq)] = 1,3·10-3

Halten kolsyra blir då [H2CO3(aq)] = [CO2(aq)] · 1,3·10-3 = 1,316·10-5 mol dm–3 · 1,3·10-3 = 1,711·10-8 mol dm–3 ≈ 1,7·10-8 mol dm–3

Första protolyssteget av kolsyran

Jämviktskonstanten för bildningen av vätekarbonat ur kolsyran är KA1 = [H+][HCO3]/[H2CO3(aq)] = 2,00·10-4 mol dm–3

Halten vätekarbonat blir då [HCO3] = 2,00·10-4 mol dm–3 · [H2CO3(aq)] / [H+]) = 2,00·10-4 mol dm–3 · 1,711·10-8 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / [H+]

Antag att pH är 8,14, vilket innebär [H+] = 10-8.14 mol dm–3

Vi får [HCO3] = 3,421·10-12 mol dm–3 / [H+] = 3,421·10-12 (mol dm–3)2 / (10-8.14 mol dm–3) = 4,723·10-4 mol dm–3 ≈ 4,7·10-4 mol dm–3

Andra protolyssteget av kolsyran

Jämviktskonstanten för bildningen av karbonat ur vätekarbonatet är KA2 = [H+][CO32–]/[HCO3] = 4.69·10-11 mol dm–3

Halten karbonat blir då [CO32–] = 4,69·10-11 mol dm–3 · [HCO3] / [H+] = 4,69·10-11 mol dm–3 · 4,723·10-8 mol dm–3 / (10-8.14 mol dm–3) = 3,057·10-6 mol dm–3 ≈ 3,1·10-6 mol dm–3

Hydratiserade joner

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Vatten är ett av de allra viktigaste ämnena. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Exempel på hur joner är hydratiserade,
dvs. omges av skal av vattenmolekyler.
Bild: © Svante Åberg

Vattenmolekyler är dipoler och bildar jon-dipolbindning i saltlösningar. Dipolen vänder sig så att den laddning som är motsatt jonens kommer närmast jonen eftersom det är den del som attraheras starkast. På grund av närheten till jonen är attraktionen av den motsatta laddningen starkare är repulsionen av laddningen med lika tecken som jonen. Därför blir det en nettoattraktion mellan jonen och dipolen.

Eftersom dipolmolekylen som helhet är elektriskt neutral får det bildade komplexet samma laddning som den enkla jonen. Eftersom det finns plats för flera vattenmolekyler kring varje jon, så omges jonerna av ett skal av vattenmolekyler. Man säger att jonerna är hydratiserade och bildar akvajoner (akvajon = jon som bundit vatten som ligander; ligand = molekyl som binds till centralatomen).

Bindningsenergin för jon-dipolbindning är alltid mycket mindre än för jon-jonbindning. När avståndet ökar, går också attraktionsenergin för den förra bindningstypen snabbare mot noll än för den senare typen. De första dipolmolekylerna som binds till en jon attraheras naturligtvis tills de kommer i kontakt med jonen. Härigenom bildas en inre sfär ("skal") av bundna ligander. Om ligander finns i tillräcklig mängd (t.ex. om jonen befinner sig i en lösning där lösningsmedlet utgörs av ligandmolekyler), binds de ofta även i ett eller flera yttre skal. Jonen kommer då att omges av ett moln av ligander som åtminstone i sina yttre delar är ganska odefinierat. Bindningsstyrkan för liganderna avtar med avståndet från centralatomen.

Den hydratiserade jonen är mycket större än vattenmolekylerna

Den nakna metalljonen är ungefär lika stor som en vattenmolekyl. Men den hydratiserade jonen är mycket större än vattenmolekylerna.

Den hydratiserade jonen fungerar som en stor partikel. Det medför att de hydratiserade jonerna inte kan passera genom semipermeabla (halvgenomsläppliga) membran. Däremot kan de fria vattenmolekylerna passera genom det semipermeabla membranet. Detta sker till exempel vid dialys. Ett annat exempel är när dricksvatten framställs ur havsvatten med omvänd osmos. Genom högt tryck tvingar man vattenmolekylerna att passera genom membranet, men de hydratiserade saltjonerna hindras. På andra sidan membranet kommer då ut rent vatten.

Koordinationskomplex

Kring en centralatom eller jon, ofta en metalljon, binds ofta molekyler eller joner som finns i den omgivande lösningen. Till exempel har man i en lösning med koppar(II)klorid kopparjoner (Cu2+) som binder ett antal kloridjoner (Cl). Utrymmet närmast kopparjonen är begränsat. Därför ryms det upp till 4 kloridjoner kring kopparjonen. Ett sådant komplex kallas koordinationskomplex och de partiklar som binds till centralatomen/jonen kallas ligander. Kloridjonen är alltså ligand.

Det finns många möjliga ligander. Ofta är lösnlingsmedelsmolekylerna ligander eftersom de är så vanliga i lösningen. Vatten (H2O) binds ofta till centraljonen och bildar ett hydratiseringsskal kring jonen. Utöver vatten (H2O) och klorid (Cl), så är ammoniak (NH3), hydroxid (OH), cyanid (CN), oxalat (COO)22- exempel på några ligander.

Koncentrationen påverkar hur många ligander som binds

Koncentrationen av de partiklar som kan fungera som ligander påverkar hur många ligander som i genomsnitt binds till centralatomerna. I en mycket utspädd lösning av kopparklorid (CuCl2) är kloridjonerna mycket ovanliga, men molekylerna av lösningsmedlet (H2O) mycket vanliga. Chansen för kopparjonen att hitta en kloridjon är därför liten. I stället binder kopparjonen vattenmolekyler som ligander och koordinationskomplexet blir [Cu(H2O)6]2+. Det ryms alltså 6 vattenmolekyler kring den centrala kopparjonen. Koordinationstalet är alltså 6 för vatten kring kopparjonen.

När koppar(II)kloriden späds med vatten byts kloridliganderna ut mot vatten och färgen övergår från grönt till blått.
Bild: CC

Om koncentrationen av kopparklorid ökar, så blir kloridjonerna vanligare. Då blir det också vanligare att kopparjoner binder en kloridjon så att koordinationskomplexet [CuCl]+ bildas. Formeln anger inte antalet vatten som också koordinerar till kopparjonen, men det finns också vattenmolekyler som binder. Därför är en mer komplett formel för komplexet [CuCl(H2O)5]+ om koordinationstalet fortfarande är 6. En kloridjon har ersatt en vattenmolekyl. På grund av kloridjonens minusladdning är komplexets laddning bara +, inte 2+ som det rena akvakomplexet hade.

Vid ytterligare högre koncentration av kopparkloriden ökar antalet kloridjoner som ligander. Som mest binder 4 kloridjoner till den centrala kopparjonen. Koordinationstalet har därför minskat från 6 till 4. Kloridjonerna är nämligen mer skrymmande (c:a 3.62 Å diameter) än vattenmolekylerna (c:a 2.75 Å diameter). Formeln för komplexet blir [CuCl4]2–, eller helt enkelt CuCl42–.

Akvakomplexet för koppar är vackert blått, men kloridkomplexet går mera i grönt. Om du har saltet koppar(II)klorid och tillsätter lite vatten i taget för att lösa saltet, så får du först den vackert gröna färgen för kloridkomplexet. Så småningom övergår färgen till blått när lösningen blir mera utspädd.

Oladdade komplex har lägre löslighet i vatten

En intressant sak är att lösligheten i vatten för komplex minskar drastiskt när komplexet är oladdat. När den tvåvärda kopparjonen koordinerar två stycken av de envärda kloridjonerna, så blir totalladdningen noll, dvs.
Cu2+ + 2 Cl ⇄ CuCl2

Lösligheten följer principen ”lika löser lika”. Eftersom vatten är ett starkt polärt ämne, så löser sig joner i vattnet lättare än oladdade partiklar.

Polaritet

I kemiska föreningar delas elektroner mellan atomerna som ingår i föreningen. Olika grundämnen har olika förmåga att attrahera elektronerna. Denna egenskap kallas elektronegativitet. Generellt sett har metaller låg elektronegativitet och ickemetaller hög elektronegativitet. Tittar man på ickemetallerna så är elektronegativiteten högst hos kväve (N), syre (O) och fluor (F). Lägst elektronegativitet, dvs. de mest elektropositiva grundämnena, finns i grupp 1 nedtill i periodiska systemet.

Polaritet hos molekylföreningar

Elektronegativitet förskjuter elektronmolnet i molekylen

Molekylföreningar är ämnen där ickemetaller har bundits till varandra. Bindningarna är kovalenta bindningar, så kallade elektronparbindningar. Elektronparen bildar elektronmoln som binder samman de två atomerna i bindningen. På grund av olika elektronegativitet hos de olika atomslagen, så förskjuts elektronmolnet mot det mer elektronegativa atomslaget. Om till exempel syre och väte bind till varandra, så är elektronmolnet förskjutet mot syre på grund av dess höga elektronegativitet.

I vätefluorid (HF) är fluor den mer elektronegativa atomen till höger.
CC Benjah-bmm27

Elektronerna är bara förskjutna i bindningen, men flyttar inte över helt och hållet. Men förskjutningen av elektronmolnet gör att en del av molekylen kan vara mer negativ. Eftersom den totala laddningen för en molekyl är noll, så finns motsvarande positiva laddning på den atom som har lägre elektronegativitet. Man säger att bindningen är polär.

Molekylen blir en dipol

Den polära bindningen kan göra att molekylen som helhet blir polär. En sådan molekyl kallas för dipol. Exempelvis är vätefluorid en dipol där fluoret har ett negativt laddningsöverskott (rött) och vätet ett positivt (blått).

Vatten är ett starkt polärt ämne på grund av syrets höga elektronegativitet.
CC

Ett annat exempel är vattenmolekylen där syret har ett negativt laddningsöverskott och vätena ett positivt. Här är det två bindningar till syret, en till vardera väteatomen. Den negativa laddningen på syret är därför summan av de positiva laddningarna på vätena. På grund av att den är vinklad är vattenmolekylen en dipol med den negativa änden vid syret och den positiva mitt emellan väteatomerna.


I koldioxid (CO2, O=C=O)är båda bindningarna mellan kolet i mitten och syret i änden polära, men motsatt riktade. Molekylen som helhet blir därför opolär.
CC
Symmetri kan släcka ut polariteten hos bindningarna

Koldioxid innehåller bindningar mellan kol och syre. Syreatomerna i var sin ända är mer elektronegativa än kolatomen i mitten. Bindningarna är alltså polära.

Koldioxid är en rak molekyl, till skillnad från vattenmolekylen. Dessutom är den polära bindningen mellan kol och syre i den ena änden motriktad motsvarande bindning i den andra änden. De motsatt riktade bindningarna släcker ut varandras polaritet, så att molekylen som helhet blir opolär, trots att de ingående bindningarna är polära.

Detta är exempel på att man måste känna till den tredimensionella strukturen hos en molekyl för att veta om den faktiskt är polär.

I kvävgas (N2) är båda atomerna lika elektronegativa. Bindningen mellan atomerna är därför opolär.
CC
En bindning mellan samma atomslag är opolär

Mellan olika atomslag finns det alltid en viss skillnad i elektronegativitet. Skillnaden kan vara stor eller liten, men inga atomslag av två olika grundämnen har exakt samma egenskaper. Däremot är två atomer av samma atomslag exakt likadana. Det betyder också att bindningen mellan dem är helt opolär. Exempel på sådan molekyl är kvävgas.


Förening mellan metall och ickemetall

I en kristall natriumklorid är den positiva Na+-jonen (lila) omgiven av negativa Cl-joner (grön) och vice versa.
CC Benjah-bmm27
Joner är alltid polära

I föreningar mellan metall och ickemetall är skillnaden i elektronegativitet så stor att en eller flera elektroner hoppat över helt och hållet från metallen till ickemetallen. Kvar blir då positiva metalljoner och negativa ickemetalljoner. Polär betyder ”laddad”. Det innebär att joner, som ju alltid har en laddning, alltid är polära.

Ett typiskt exempel på en jonförening är natriumklorid, dvs. vanligt koksalt. Saltkristallerna är uppbyggda av tätt sammanpackade positiva natriumjoner och negativa kloridjoner. Varannan jon är positiv och varannan negativ för att plus- och minusladdningar ska komma så nära varandra som möjligt. Positiv och negativa laddningar attraherar nämligen varandra.

Några föreningar mellan metall och ickemetall är gränsfall

Några metaller är inte så elektropositiva, dvs. deras elektronegativitet är inte så låg. De finns i periodiska systemen i gränsområdet mellan metaller och ickemetaller. Halvmetallerna är sådana, men även några som betecknas som metaller är ändå inte så elektropositiva.

Ett sådant exempel är silver (Ag). När silver och klorid reagerar till silverklorid (AgCl), så är skillnaden i elektronegativitet för liten för att det ska bildas joner. Men bindningen är ändå starkt polär. Därför är bindningen i silverklorid polär kovalent. Silverklorid är visserligen ett polärt ämne, men inte så starkt polärt. Lösligheten i vatten är därför dålig.

material på avancerad nivå kommer att läggas in här

Ytspänning

Vattnets ytspänning är hög

Vatten är exempel på ett ämne med hög ytspänning. Det beror på att attraktionskrafterna mellan vattenmolekylerna är ovanligt stora. Vätebindningen mellan syret i en molekyl och väteatomen i en annan närliggande molekyl är nämligen stark.


Ytspänningen är en följd av att attraktionskrafterna i gränsskiktet är riktade inåt.
"Wasser in Tropfen und an der Phasengrenze" av Booyabazooka" (CC BY)

Ytspänningen visar sig i gränsskiktet

Attraktionskrafterna mellan molekylerna får vätskan att hålla samman. Inne i vätskan verkar attraktionskrafterna åt alla håll eftersom varje molekyl är omgiven på alla sidor av andra molekyler som den attraherar.

I gränsskiktet mellan vattnet och luften är bindningarna mycket svagare, så svaga att de oftast är försumbara. Luftens molekyler kan nämligen inte bilda de starka vätebindningarna. Dessutom är avståndet mellan luftmolekylerna stort, vilket innebär att vattnet inte kan binda till så många luftmolekyler. Bindningarna är dessutom mycket kortvariga. De existerar bara i ett mycket kort ögonblick då luftmolekylen kolliderar med vattenytan.

Det är skillnaden i energi mellan vattenmolekylerna i vätskeytan (högre energi) och molekylerna i vätskans inre (lägre energi) som är själva ytspänningen. Ytspänningen är alltså ett mått på den energi som krävs för att skapa fasgränsen mellan vätskan och gasen.


Ytspänning i en droppe.
Bild: Svante Åberg, Sofie Wallin

Ytspänning i en droppe

De röda pilarna visar krafterna som håller samman vattenmolekylerna i en droppe. Nettokraften (summan av krafterna) visas med blå pil.

I droppens inre verkar krafterna åt alla håll ungefär lika mycket. Krafterna tar därför ut varandra så att nettokraften blir nästan noll.

I vattenytan finns bara krafter som verkar i ytan och mot droppens inre. Nettokraften pekar därför mot droppens inre. Det verkar som om vattnet har en tunn hinna, ytspänning. Ytspänningen gör att droppen får en rund form.



Ytspänning i en plan vätskeyta.
Bild: Svante Åberg, Sofie Wallin

Ytspänning i en plan vätskeyta

Om vattenmängden är större flyter vattnet ut till en plan yta. Det beror på att vattnets tyngdkraft är större än ytspänningens sammanhållande krafter. Ytspänningen finns dock kvar som en tunn hinna på vattenytan. Det är den som gör att skräddare (insekter) kan springa på vattenytan utan att sjunka.

Energinivån är högre hos molekylerna i vätskeytan

Bindningsenergier sänker molekylernas energinivå. Det kan man förstå när man tänker på att det krävs arbete för att slita loss en molekyl från de andra molekylerna i vätskan. Eftersom molekylerna i vätskeytan binder färre grannmolekyler, så sänks deras energi inte lika mycket som molekylerna längre in. Molekylerna i ytan ligger på en högre energinivå. Det är denna energiskillnad som är ytspänningen. Ytspänning mäts i enheten energi per ytenhet (J/m2).

Men energi kan också mätas som det arbete som krävs att skapa vätskeytan. Till exempel krävs det arbete att blåsa upp en såpbubbla, även om det är lite. Om man tar bort munnen från blåsröret innan bubblan har lossnat, så drar såpbubblan ihop sig igen. Det finns alltså en spänning i vätskeytan. Ytspänningen kan därför också anges som kraft per sträcka (N/m), ungefär som den kraft som krävs att sträcka ett gummiband.

Litteratur

  1. Carbon Dioxide, Chemical of the Week, Bassam Shakhashiri
    http://www.scifun.org/CHEMWEEK/CarbonDioxide2017.pdf (2017-03-10)
  2. Carbon dioxide in Earth's atmosphere, Wikipedia
    https://en.wikipedia.org/wiki/Carbon_dioxide_in_Earth%27s_atmosphere (2017-09-07)
  3. Ocean acidification, Wikipedia
    https://en.wikipedia.org/wiki/Ocean_acidification (2017-09-08)
  4. Carbon Dioxide and Carbonic Acid, Utah State university
    http://ion.chem.usu.edu/~sbialkow/Classes/3650/Carbonate/Carbonic%20Acid.html (2017-09-08)
  5. Dissolved Oxygen and Carbon Dioxide, Prof. Shapley, University of Illinois
    http://butane.chem.uiuc.edu/pshapley/GenChem1/L23/web-L23.pdf (2017-09-08)
  6. "Detergents" i Ullmann's Encyclopedia of Industrial Chemistry, Vol. A8, 1987, VCH Publishers, Weinheim.
  7. W. W. Linstromberg, H. E. Baumgarten, Organisk kemi, 1982, s. 221-226, Liber, Malmö.
  8. S.S. Zumdahl, Chemical Principles, 1995, kap 23, s. 1034-1035, D.C. Health and Company.
  9. "Hårt vatten" i Nationalencyklopedin, 1994 Bra böcker AB, Höganäs.
  10. Gunnar Hägg, Allmän och oorganisk kemi, 1984, 8:e upplagan, Almqvist & Wiksell, Uppsala.
  11. Vatten, Shenet
    http://www.shenet.se/ravaror/vatten.html (2003-05-25)
  12. Grundingredienser i tvål, Shenet
    http://www.shenet.se/recept/tvalfasting.html (2003-05-25)
  13. Det är en konst att tvätta, Helsingfors energi
    http://www.helsinginenergia.fi/svenska/Information/Helen/Helen401sv_2.pdf (2003-05-25)
  14. Tvättmedel - pulver, Tox-Info handboken
    http://toxinfo.se/docs/ex6.doc (2003-05-25)
  15. Karta över CaCO3-halter i Sverige, Sveriges Lantbruksuniversitet (SLU)
    http://www-umea.slu.se/miljodata/akermark/map_CaCO3_obs.htm (2003-05-25)
  16. Chemical of the Week - Lime (CaO), Bassam Shakhashiri
    http://scifun.chem.wisc.edu/chemweek/lime/lime.html (2003-05-25)
  17. The Zeolite Group of Minerals, Amethyst Galleries, Inc.
    http://mineral.galleries.com/minerals/silicate/zeolites.htm (2003-05-25)
  18. Natural Water, Cyberspace Chemistry (CaCt)
    http://www.science.uwaterloo.ca/~cchieh/cact/applychem/waternatural.html (2003-05-25)

Fler experiment


kemisk bindning
Att vara kemisk detektiv
Bestäm CMC för diskmedel
Blandningar av lösningsmedel
Diska med äggula
Ett målande experiment - att rengöra en målarpensel
Frigolit i aceton
Färga ullgarn med svampar
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör hårt vatten mjukt
Gör kopparslanten skinande ren - med komplexkemi
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Håller bubblan?
Kemisk vattenrening
Kristallvatten i kopparsulfat
Lödtenn 60
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
Permanenta håret
Slime
Studsboll
Såpbubblor
Tag bort rostfläcken med det ämne som gör rabarber sura
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Tillverka papperslim
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Varför färgas textiler olika?
Vattenrening
Visa ytspänning med kanel

kemiska metoder
Att göra bly
Att vara kemisk detektiv
Bestämning av antalet kristallvatten i kopparsulfat
Blev disken ren?
Bränna papper
Elektrofores av grön hushållsfärg
Framkalla fingeravtryck med jodånga
Framkalla fotopapper
Framställ låglaktosmjölk
Förtenning
Gör hårt vatten mjukt
Identifiera plasten
Indikatorpärlor
Innehåller koksaltet jod?
Kemi med zinkjodid, del 2: Återbilda grundämnena elektrokemiskt
Kemisk vattenrening
Matoljans viskositet och omättade fettsyror
Mät CMC med hjälp av droppstorleken
Syrehalten i luft
Testa C-vitamin i maten
Tillverka en ytspänningsvåg
Tillverka fotopapper
Vad innehåller mjölk?
Vattenrening
Visa ytspänning med kanel

urval experiment under revidering
Badbomber
Bjud din jäst på mat
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den bästa bulldegen
Den tunga koldioxiden
Diffusion av kopparjoner
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Eld - varför brinner det?
Elda stålull
En märklig planta
Gelégodis i vatten
Gör hårt vatten mjukt
Gör kopparslanten skinande ren - med redoxkemi
Hur gör man kakan porös?
Indikatorpärlor
Kemi i en brustablett
Kemi i en plastpåse
Koka vatten i en spruta
Ljuset under glaset
Mentos-pastiller i kolsyrad läsk
När flyter potatisen?
Osmos i ett ägg
Osmos i potatis
Pelargonens färg
pH i kokt mineralvatten
pH-beroende avfärgning av rödkål
pH-förändringar vid fotosyntes
Principen för dynamisk jämvikt
Pulversläckare
Regnbågens färger med Rödkåls-indikator
Surt regn
Syror och baser i konsumentprodukter
Varför äter vi Samarin?
Vattenrening

vardagens kemi
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Bestäm CMC för diskmedel
Blev disken ren?
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Den omöjliga tvålen - den är preparerad!
Diska med äggula
Eld - varför brinner det?
Eldprovet
Enzymaktivitet i ananas
Enzymer i Tvättmedel
Ett gammalt tvättmedel, del 1: Salt ur björkaska
Ett gammalt tvättmedel, del 2: Tvål ur saltet
Ett målande experiment - att rengöra en målarpensel
Falu rödfärgspigment ur järnvitriol
Framställ en detergent
Framställ låglaktosmjölk
Fruktköttet får solbränna
Färga ullgarn med svampar
Färgämnen i M&M
Gore-Tex, materialet som andas
Gör din egen limfärg
Gör din egen tandkräm
Gör ditt eget läppcerat
Gör hårt vatten mjukt
Göra lim av kasein
Hockey-visir
Hur fungerar en torrboll?
Hur gör man kakan porös?
Hur moget är äpplet?
Hur smakar salmiak?
Håller bubblan?
Karbidlampan
Kemi i en brustablett
Kemisk vattenrening
Majonnäs - en emulsion
Maskrosen som krullar sig
Modellmassa av mjölk
Myggmedel - hur funkar det?
Målarfärgens vattengenomsläpplighet
När flyter potatisen?
Olja som lösningsmedel
Optiska Vitmedel
Osmos i ett ägg
Osynlig gas
Pektin och marmeladkokning
Pelargonens färg
Permanenta håret
Pulversläckare
Rengöra silver
Rostbildning och rostskydd
Skär sig majonnäsen?
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Superabsorbenter i blöjor
Surt regn
Syror och baser i konsumentprodukter
Såpbubblor
Tillverka din egen deodorant
Tillverka din egen glidvalla
Tillverka din egen tvål, del 1: Själva tvålen
Tillverka din egen tvål, del 2: Parfymera och färga tvålen
Tillverka ditt eget läppstift
Tillverka Falu rödfärg enligt gammalt recept
Tillverka papperslim
Tillverka rengöringskräm
Utfällning av aluminium
Utvinna järn ur järnberikade flingor
Vad händer då något brinner?
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Vad är skillnaden mellan maskin- och handdiskmedel?
Varför färgas textiler olika?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför rostar järn och hur kan man förhindra det?
Varför slipper bilen varma yllekläder på vintern?
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Vattenrening
Visa ytspänning med kanel
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Ägget i flaskan
Ärg på en kopparslant
Äta frusen potatis