Den omöjliga tvålen - den är preparerad!

Tillhör kategori: jämvikt, vardagens kemi

Författare: Peter Eriksson, Svante Åberg

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Den omöjliga tvålen - den är preparerad!

Irriterande Använd skyddsglasögon 

Tid för förberedelse: Försumbart

Tid för genomförande: 10 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Busenkelt

Introduktion

I experimentet får du preparera en tvål så att den blir helt hopplös att tvätta sig med fast den syns helt normal - något att prova på sina föräldrar! Tvålen kan återställas i sitt urspungliga skick efter försöket.

Riktlinjer

Aktiviteten genomförs lämpligen som ett elevförsök.

Säkerhet

Endast om tvålen ska återställas på kemisk väg finns någon risk. Undvik att få soda (lut) i ögonen. Om det sker så måste ögonen sköljas rikligt med vatten och läkare kontaktas.

Observera att lut inte får förvaras i aluminiumkärl. Överbliven lösning av lut kan, liksom citronsyra, spolas ned i vasken tillsammans med rikligt med vatten. Citronsyra är ofarligt i små mängder.

Materiel

För att preparera tvålen:

För att återställa tvålen i ursprungligt skick på kemisk väg:

Förarbete

Inget förarbete.

Utförande

Preparera tvålen


Foto: ©Svante Åberg

Återställa tvålen

Enklast och säkrast är att borsta av ytskiktet på tvålen med en borste.

Den kan också återställas på kemisk väg:

Förklaring


Foto: ©Svante Åberg
Vanlig tvål är ett salt av fettsyror och natriumjoner. Tvålen är löslig i vatten eftersom fettsyran förekommer i sin laddade form, dvs som jon. När man tillsätter syra återbildas fettsyran så att den förlorar sin jonladdning. Den kan då inte längre lösa sig i vattnet utan blir fet.

Fettsyran fastnar envist på huden när man försöker tvätta sig och det känns ungefär som margarin på händerna.

Den feta tvålen som bildats ligger bara på ytan. Därför kan man borsta tvålen så att den riktiga tvålmassan kommer fram. Sedan kan man använda tvålen på vanligt sätt igen.

Om man vill återställa tvålen på kemisk väg så gäller det att få fettsyran att övergå i sin jonform. Det sker genoma att göra tvålen basisk igen. Därför behöver man skölja den i lut, t ex utspädd natriumhydroxid (NaOH) som dock är farlig för ögonen, eller något annat basiskt ämne. Natriumkarbonat eller kaliumkarbonat bör också fungera eftersom karbonatet är en basisk jon.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Tvåltillverkning

Tvål tillverkas genom att koka fett tillsammans med lut. Lut är ett annat namn för hydroxid (t.ex. natriumhydroxid). Man kan bereda lut genom att lösa kaliumkarbonat i vatten. Kaliumkarbonat finns i askan från björkved och användes förr när man själv tillverkade sin tvål hemma. Fettet fick man när man slaktade sina husdjur. Det går också bra att använda fett från växtriket, t ex kokosfett.

Fettet, som är en ester av alkoholen glycerol, hydrolyseras vid reaktionen och det bildas glycerol och fettsyra. Hydrolys innebär att en bindning bryts samtidigt som den reagerar med vatten. I den basiska lösningen förekommer fettsyran i sin anjonform, dvs den är negativt laddad. Den bildar salt tillsammans med de natrium- eller kaliumjoner som finns i lösningen. Detta är själva tvålmassan.

Reaktionen vid tvåltillverkning
Reaktionen vid tvåltillverkning

Genom att tillsätta koksalt till den bildade tvållösningen så får man glycerolen och tvålmassan att skilja på sig.

Den preparerade tvålen

Tvålens reaktion med syra
Tvålen bildar vattenolösliga fettsyramolekyler tillsammans med syra

Laddade ämnen (joner) är lättlösliga i vatten. Däremot är fettsyran olöslig eftersom den är oladdad och dess långa svans, här betecknad med R, är oljelik och vattenavvisande. Fettsyrasvansen är en kolvätekedja med omkring 10-20 kolatomer, beroende på vilket fett som använts vid tvåltillverkningen.

Ämnen som är mer eller mindre laddade sägs vara polära. Salter är polära eftersom jonerna bär på positiva och negativa laddningar. Även ämnen som inte har någon nettoladdning kan vara polära. Det är fallet med glycerol, som innehåller OH-grupper (hydroxylgrupper). Inom glycerolmolekylen finns en laddningsförskjutning så att OH-grupperna är något mer negativa och kolkedjan något mer positivt laddad. Det gör glycerolen polär så att den blir vattenlöslig.

Ämnen som varken bär laddningar eller har några nämnvärda laddningsförskjutningar inom molekylen sägs vara opolära. Det är fallet med den långa svansen i fettsyran.

Polära ämnen, eller delar av molekyler, är hydrofila (vattenälskande). Opolära ämnen, eller delar av molekyler, är hydrofoba (vattenskyende).

Att återställa tvålen på kemisk väg


Foto: ©Svante Åberg
Fettsyran är en karboxylsyra. Karboxylsyror är svaga syror. Det innebär att man kan bestämma om den ska förekomma i sin molekyl- (R-COOH) eller jonform (R-COO-) genom att justera pH. Syra-basjämvikten är sådan att vid lågt pH, dvs i sur miljö, övergår fettsyran i sin molekylform. Man säger att fettsyran är protonerad när den tagit emot en vätejon eftersom "proton" och "vätejon" är samma sak. I basisk miljö förlorar fettsyran sin proton och den kvarvarande delen blir därför minusladdad. Reaktionen när en syra förlorar sin vätejon kallas protolys (sönderdelning där en proton avges). Syra-basjämvikten kan skrivas på följande sätt:

Syra-basjämvikt
Karboxylsyrans syra-basjämvikt

Det du ska göra för att återställa tvålen på kemisk väg är alltså att skölja den i en basisk lösning eller strö på ett basiskt ämne, t ex kaliumkarbonat.

Fördjupning

Löslighet

När atomer eller molekyler av ett ämne blandas på atom-/jon-/molekylnivå med ett annat ämne, så säger man att ämnet löser sig. Både fasta, flytande och gasformiga ämnen kan gå i lösning på detta sätt. Ämnet som tar emot partiklarna som löser sig, och som förekommer i större mängd, kallas lösningsmedel.

Exempel på lösningar är:

En lösning behöver alltså inte vara en vätska. Det finns både fasta, flytande och gasformiga lösningar.

Begränsad löslighet

Ofta är lösligheten begränsad. Det har att göra med den jämvikt som uppstår mellan ämnet i lösning och samma ämne i ren form. Till exempel löser sig koksalt i vatten upp till 36 g per 100 ml (motsvarande 26 vikts-%) vid 20 °C.

Jonerna i den fasta natriumkloriden löser sig med jämn hastighet, vilket tenderar till att öka koncentrationen av löst ämne. Men den motsatta reaktioner sker också. Natrium- och kloridjonerna i lösningen faller ut som fast natriumklorid. Den hastighet med vilken saltet faller ut beror på hur ofta natrium- och kloridjoner stöter på varandra i lösningen. Därför ökar utfällningen av salt med koncentrationen i natriumkloridlösningen. Vid 26 vikts-% NaCl är utfällningen lika snabb som upplösningen av koksaltet. Då sker ingen nettoförändring. Man har en dynamisk jämvikt där lösningen är mättad, dvs. innehåller maximal mängd koksalt.

Obegränsad blandbarhet

Ibland är lösligheten obegränsad och det lösta ämnet och lösningsmedlet är fullständigt blandbara i alla koncentrationer. Exempel på detta är etanol i vatten. Vilken proportion av etanol och vatten du än blandar, så kommer du att få en homogen lösning, dvs. en enda fas. Du kommer inte att se någon fasgräns mellan ämnena.

Lösning av gasformiga partiklar i en annan gas har alltid obegränsad blandbarhet. Det beror på att i en gas så är partiklarna så långt ifrån varandra att de inte påverkas av några attraktionskrafter som tenderar att klumpa samman ämnena i aggregat. Alla atomer/molekyler rör sig helt fritt i gaslösningen.

Bindningskrafterna avgör lösligheten - "Lika löser lika"

När det finns ett löst ämne och ett lösningsmedel, så finns det tre alternativa bindningar som kan uppstå mellan partiklarna (atomerna/molekylerna/jonerna):

Man brukar använda en tumregel: "Lika löser lika". Det syftar på polariteten, dvs. laddningen hos partiklarna. Ämnen löser sig lättast i varandra om de är ungefär lika polära. Vi ska förklara hur detta kommer sig.

Vatten är en starkt polärt ämne. Visserligen är molekylen som helhet oladdad, men det finns en laddningsförskjutning så att syreatomen är negativ och väteatomerna positiva. Två vattenmolekyler binder varandra ganska starkt genom att syret i den ena molekylen lägger sig nära vätet i den andra vattenmolekylen. Den negativa och positiva laddningen attraherar varandra. Vatten binder alltså varandra ganska starkt.

Kolvätena i bensin är ett mycket opolära. Kolvätena är oladdade molekyler som inte heller har någon laddningsförskjutning inom sig i molekylen. Det gör att kolväten bara binder varandra svagt med hjälp av Londonkrafter (Van der Waals-krafter).

Ju starkare bindningen är, desto större chans är det att partiklarna ska klumpa sig samman. Vatten i blandning med bensin ger mycket dålig löslighet. Vattenmolekylerna klumpar samman sig med sina starka krafter och bildar en egen fas. Kolvätemolekylerna blir över och bildar en annan fas. Kolvätena bildar inte en egen fas på grund av attraktion mellan kolvätena, utan därför att de inte få vara tillsammans med vattnet. De blir så att säga ratade av vattenmolekylerna.

Om två ämnen inte har samma polaritet, men ändå inte skiljer sig åt alltför mycket, så får de en god löslighet även om den är begränsad. En möjlighet att lösa ett ämne är därför att använda lösningsmedel i flera steg. Om du till exempel har fått smutsig motorolja på händerna, så är det svårt att tvätta bort med tvål. Motoroljan är alltför opolär för att tvålen riktigt ska kunna lösa den. I ett första steg kan du då smörja händerna med margarin, som är opolärt. Oljan löser sig i margarinet. I nästa steg tvättar du bort margarinet med hjälp av tvål och vatten. Oljan som är löst i margarinet följer då med margarinet när det tvättas bort med vatten.

Hydrofil och hydrofob

Det grekiska ordet fili betyder kärlek, vänskap och dragning till. Motsatsen i grekiskan är fobi, som betyder fruktan eller rädsla för. Även ordet hydro kommer från grekiskan och anger att något har med vatten att göra.

Inom kemin talar vi om hydrofila eller hydrofoba egenskaper hos molekylgrupper eller hela molekyler. Förklaringen till de hydrofila och hydrofoba egenskaperna ligger hos attraktionskrafterna mellan partiklarna i en vattenlösning, det vill säga de intermolekylära bindningarna.

Vatten är ett starkt polärt lösningsmedel

Vi utgår från att vårt lösningsmedel är vatten.

Mellan vattenmolekylerna finns starka vätebindningar. Vätebindningarna orsakas av ett positivt laddningsöverskott på väteatomen och ett negativt på syreatomen. Vätet i en vattenmolekyl attraheras därför av syret i en angränsande vattenmolekyl. Det är den starka polariteten i vätebindningarna som är kännetecknande för vattnets egenskaper.

Det finns andra lösningsmedel som har liknande egenskaper som vatten. Ett exempel är metanol (CH3OH), som också har en OH-grupp och kan vätebinda. Ett annat exempel är ättiksyra (CH3COOH), som även den har en OH-grupp som kan vätebinda. Vatten är dock i en särställning bland lösningsmedel vad gäller styrkan hos polariteten.

Förklaringen bakom "lika löser lika"

I vattenlösningen binder vattenmolekyler till varandra med sina vätebindningar. En lösning förutsätter att lösningsmedlet och det lösta ämnet blandas ända ner på molekylnivå. Det lösta ämnet och lösningsmedlet är i väldigt nära kontakt med varandra. För att detta ska vara möjligt måste bindningen mellan det lösta ämnet och vattnet vara så stark att den kan konkurrera med vätebindningen mellan vattenmolekyler.

Polärt ämne i polärt lösningsmedel

En förutsättning för en stark bindning mellan det lösta ämnet och vatten är att det lösta ämnet också är polärt, det vill säga har laddningar som kan attrahera vattenmolekylernas laddningar. Exempelvis kan metanol, med sin polära OH-grupp, vätebinda till vattenmolekyler. För vattenmolekylerna gör det därför inte så stor skillnad om de binder till en annan vattenmolekyl eller till en metanolmolekyl. Vatten och metanol kan blandas ända ner på molekylnivå.

Ett annat exempel på polärt ämne är koksalt. Polariteten finns inbyggd i saltets byggstenar, som ju är jonerna Na+ och Cl. Polariteten hos saltet gör att det löser sig i vatten.

Opolärt ämne i polärt lösningsmedel

Vatten och olja separerar i två faser eftersom vatten är polärt, men olja opolär.
Bild: Svante Åberg

Om det lösta ämnet är opolärt, eller bara är svagt polärt, så skapas ingen stark bindning till vatten. Vattnet binder bara till andra vattenmolekyler. Det betyder att allt vatten klumpar ihop sig till en fas.

Det ämne som skulle lösas blir över och bildar en egen fas. Det är inte så att molekylerna i det opolära ämnet attraheras till varandra. Tvärtom är bindningarna mellan de opolära molekylerna svaga. Men det är helt enkelt så att de blir över när vattenmolekylerna håller ihop.

Bildningen av faser bygger på att polära och opolära ämnen inte blandar sig med varandra. Sedan gör skillnaden i densitet att den ena fasen flyter upp och den andra sjunker. Om du försöker blanda vatten (polärt) med bensin (opolärt), så kommer den lättare bensinen att lägga sig som ett lager ovanpå vattnet. Bensinen utgör den ena fasen och vattnet den andra.

För att lättare förstå hur detta fungerar kan du tänka dig att du har en kulpåse med stenkulor och små runda magneter. Om du skakar på påsen ett tag, så kommer magneterna att klumpa ihop sig. Över blir stenkulorna, som ligger för sig själva. Magneterna motsvarar vattenmolekyler och stenkulorna opolära molekyler i denna liknelse.

Opolärt ämne i opolärt lösningsmedel

När lösningsmedlet är opolärt, som till exempel bensin, så finns inga starka bindningar mellan molekylerna i lösningsmedlet. Det gör det lätt för andra molekyler att konkurrera med bindningarna mellan lösningsmedelsmolekylerna. Till exempel kan opolära jodmolekyler lösa sig i bensin. Bindningen mellan jod och bensin är visserligen svag, men det gör inget eftersom bindningen mellan två bensinmolekyler också är svag. Det lösta ämnet och lösningsmedlet blandar sig ner på molekylnivå.

Detta exempel kan illustreras med en kulpåse där man har stenkulor och glaskulor. Även om det är olika sorters kulor, så blandas de med varandra om påsen skakas, eftersom inga kulor attraherar varandra.

Hydrofob effekt


Fosfolipider kan bilda olika strukturer som bygger på den hydrfoba effekten där den opolära delen av molekylen undviker kontakt med vattnet.
"Phospholipids aqueous solution structures" av Mariana Ruiz Villarreal, LadyofHats" Public Domain Mark

Hydrofob effekt är tendensen hos opolära ämnen att klumpa sig samman i vattenlösningar och utestänga vattenmolekyler.

Exempel är bildningen av cellmembran där fosfolipider vänder sin opolära (hydrofoba) ände in mot membranets mitt och den polära (hydrofila) delen ut mot vattenlösningen. Cellmembranet är ett bilager där dess inre hydrofoba del är gömd från kontakt med vattnet.

Ett annat exempel är hydrofoba områden på proteiner. Sådana områden har en förmåga att binda till sig opolära molekyler. Ofta är enzymers funktion kopplade till sådan hydrofob effekt hos den aktiva ytan på enzymet.

Veckningen av de långa aminosyrakedjorna till proteiner med en mycket bestämd form styrs till stor del av den hydrofoba effekten. Fel på en enda aminosyra i den långa sekvensen kan göra att proteinet inte får rätt form och därför inte fungerar som det ska i kroppen.

Den vanliga tvättmekanismen hos tvål, tvättmedel eller diskmedel är också ett resultat av den hydrofoba effekten. Fettpartiklar bakas in av de detergentmolekylerna vars opolära svansar löser sig i fettet med de polära huvudena pekande utåt mot vattenlösningen. Fettpartiklarna blir helt täckta av detergenten så att det liknar en ryamatta.

Termodynamik och hydrofob effekt

Inom termodynamiken finns två drivkrafter för kemiska förändringar. Det ena är strävan mot lägsta energi, det andra strävan mot högsta entropi.

Ett system går mot lägre energi när starka bindningar skapas. Exempel är vätebindningarna mellan vattenmolekylerna. Om bindningarna mellan vattenmolekylerna bryts, till exempel genom att andra molekyler lägger sig i vägen, så ökar systemets energi. Det krävs nämligen energi att sära på vattenmolekylerna. Detta går dock tvärtemot systemets tendens att minimera sin energi. Strävan mot minimering av energin gynnar den hydrofoba effekten.

Dock är det så att entropin, som kan beskrivas som graden av oordning, ökar när olika molekyler blandas. Den normala tendensen för system är att gå mot större oordning (högre entropi). Strävan mot ökad entropi motverkar därför den hydrofoba effekten.

Temperaturen är också en faktor som har betydelse. Ju varmare det är, desto häftigare är molekylrörelserna. Ju kraftigare molekylrörelserna är, desto större tendens är det att molekylerna ska blandas med varandra. Ökad temperatur medför därför minskad hydrofob effekt. Det går också att förklara med att när tillgången på energi är hög, så drivs systemet mot en högre energi.

Drivkraften bakom de kemiska reaktionerna kan sammanfattas med Gibbs energi, som också benämns fri entalpi:

ΔG = ΔH - T·ΔS, där

G = Gibbs energi (J)
H = entalpi (systemets inre energi + produkten p·V) (J)
S = entropi (J K–1)
T = absolut temperatur (K)
Δ anger en förändring av ...

Den spontana reaktionsriktningen är när ΔG < 0. Negativa värden på ΔH och positiva värden på ΔS garanterar spontan reaktionsriktning. Ökande temperatur T förstärker effekten av ΔS.

Polaritet

I kemiska föreningar delas elektroner mellan atomerna som ingår i föreningen. Olika grundämnen har olika förmåga att attrahera elektronerna. Denna egenskap kallas elektronegativitet. Generellt sett har metaller låg elektronegativitet och ickemetaller hög elektronegativitet. Tittar man på ickemetallerna så är elektronegativiteten högst hos kväve (N), syre (O) och fluor (F). Lägst elektronegativitet, dvs. de mest elektropositiva grundämnena, finns i grupp 1 nedtill i periodiska systemet.

Polaritet hos molekylföreningar

Elektronegativitet förskjuter elektronmolnet i molekylen

Molekylföreningar är ämnen där ickemetaller har bundits till varandra. Bindningarna är kovalenta bindningar, så kallade elektronparbindningar. Elektronparen bildar elektronmoln som binder samman de två atomerna i bindningen. På grund av olika elektronegativitet hos de olika atomslagen, så förskjuts elektronmolnet mot det mer elektronegativa atomslaget. Om till exempel syre och väte bind till varandra, så är elektronmolnet förskjutet mot syre på grund av dess höga elektronegativitet.

I vätefluorid (HF) är fluor den mer elektronegativa atomen till höger.
CC Benjah-bmm27

Elektronerna är bara förskjutna i bindningen, men flyttar inte över helt och hållet. Men förskjutningen av elektronmolnet gör att en del av molekylen kan vara mer negativ. Eftersom den totala laddningen för en molekyl är noll, så finns motsvarande positiva laddning på den atom som har lägre elektronegativitet. Man säger att bindningen är polär.

Molekylen blir en dipol

Den polära bindningen kan göra att molekylen som helhet blir polär. En sådan molekyl kallas för dipol. Exempelvis är vätefluorid en dipol där fluoret har ett negativt laddningsöverskott (rött) och vätet ett positivt (blått).

Vatten är ett starkt polärt ämne på grund av syrets höga elektronegativitet.
CC

Ett annat exempel är vattenmolekylen där syret har ett negativt laddningsöverskott och vätena ett positivt. Här är det två bindningar till syret, en till vardera väteatomen. Den negativa laddningen på syret är därför summan av de positiva laddningarna på vätena. På grund av att den är vinklad är vattenmolekylen en dipol med den negativa änden vid syret och den positiva mitt emellan väteatomerna.


I koldioxid (CO2, O=C=O)är båda bindningarna mellan kolet i mitten och syret i änden polära, men motsatt riktade. Molekylen som helhet blir därför opolär.
CC
Symmetri kan släcka ut polariteten hos bindningarna

Koldioxid innehåller bindningar mellan kol och syre. Syreatomerna i var sin ända är mer elektronegativa än kolatomen i mitten. Bindningarna är alltså polära.

Koldioxid är en rak molekyl, till skillnad från vattenmolekylen. Dessutom är den polära bindningen mellan kol och syre i den ena änden motriktad motsvarande bindning i den andra änden. De motsatt riktade bindningarna släcker ut varandras polaritet, så att molekylen som helhet blir opolär, trots att de ingående bindningarna är polära.

Detta är exempel på att man måste känna till den tredimensionella strukturen hos en molekyl för att veta om den faktiskt är polär.

I kvävgas (N2) är båda atomerna lika elektronegativa. Bindningen mellan atomerna är därför opolär.
CC
En bindning mellan samma atomslag är opolär

Mellan olika atomslag finns det alltid en viss skillnad i elektronegativitet. Skillnaden kan vara stor eller liten, men inga atomslag av två olika grundämnen har exakt samma egenskaper. Däremot är två atomer av samma atomslag exakt likadana. Det betyder också att bindningen mellan dem är helt opolär. Exempel på sådan molekyl är kvävgas.


Förening mellan metall och ickemetall

I en kristall natriumklorid är den positiva Na+-jonen (lila) omgiven av negativa Cl-joner (grön) och vice versa.
CC Benjah-bmm27
Joner är alltid polära

I föreningar mellan metall och ickemetall är skillnaden i elektronegativitet så stor att en eller flera elektroner hoppat över helt och hållet från metallen till ickemetallen. Kvar blir då positiva metalljoner och negativa ickemetalljoner. Polär betyder ”laddad”. Det innebär att joner, som ju alltid har en laddning, alltid är polära.

Ett typiskt exempel på en jonförening är natriumklorid, dvs. vanligt koksalt. Saltkristallerna är uppbyggda av tätt sammanpackade positiva natriumjoner och negativa kloridjoner. Varannan jon är positiv och varannan negativ för att plus- och minusladdningar ska komma så nära varandra som möjligt. Positiv och negativa laddningar attraherar nämligen varandra.

Några föreningar mellan metall och ickemetall är gränsfall

Några metaller är inte så elektropositiva, dvs. deras elektronegativitet är inte så låg. De finns i periodiska systemen i gränsområdet mellan metaller och ickemetaller. Halvmetallerna är sådana, men även några som betecknas som metaller är ändå inte så elektropositiva.

Ett sådant exempel är silver (Ag). När silver och klorid reagerar till silverklorid (AgCl), så är skillnaden i elektronegativitet för liten för att det ska bildas joner. Men bindningen är ändå starkt polär. Därför är bindningen i silverklorid polär kovalent. Silverklorid är visserligen ett polärt ämne, men inte så starkt polärt. Lösligheten i vatten är därför dålig.

material på avancerad nivå kommer att läggas in här

Tvätt och rengöring

Smuts innehåller ofta feta ämnen, var sig det är matrester på tallriken eller fläckar på kläderna. Fetter har mycket låg löslighet i vatten. Det är därför svårt att få rent genom att bara tvätta i vatten.

Men om man tillsätter disk- eller tvättmedel, så blir det stor skillnad. Det finns flera namn för denna typ av ämnen:

amfifil = ämne med en hydrofil och en hydrofob del
detergent = ämne som rengör
tensid = ämne som sänker ytspänningen
ytaktivt ämne eller surfaktant = ämne som lägger sig i fasgränsytor

Disk- och tvättmedelsmolekyler är amfifiler


Detergentmolekylerna bäddar in fettpartiklar så att de får en hydrofil yta. Då blir de "vattenlösliga" och kan sköljas bort.
Bild: Svante Åberg

Gemensamt för sådana molekyler är att de dels har en hydrofob (vattenskyende) del, ofta i form av en kolvätekedja, dels en hydrofil (vattenälskande) grupp i andra änden. Den hydrofoba svansen är fettlöslig samtidigt om det hydrofila huvudet är vattenlösligt.

Amfifilen är ytaktiv

Detergenten sätter sig spontant i gränsskiktet mellan fett och vatten. Då hamnar den fettlösliga delen i det opolära fettet samtidigt om den vattenlösliga delen har kontakt med det polära vattnet.

Det leder till att fettpartiklar bäddas in i ett lager av amfifilen där molekylernas polära huvuden pekar ut mot vattenlösningen.

Amfifilen gör fettpartiklarna "vattenlösliga"


En dispersion (emulsion) av fettpartiklar i vatten stabiliseras av emulgeringsmedlet, som är ett ytaktivt ämne.
Bild: Svante Åberg

Inbäddade fettpartiklar med en hydrofil yta kan börja sväva i vattenlösningen. Det handlar inte om äkta löslighet eftersom blandningen inte är på molekylnivå, utan med större partiklar. Varje fettpartikel utgör en egen fas skild från vattenfasen.

En sådan blandning av olösliga partiklar i en vätska kallas dispersion. Ett annat namn är emulsion. Vid tvättprocessen är fettpartiklarna små droppar medan vattenlösningen är en kontinuerlig fas som omger fettpartiklarna.

Mekanisk bearbetning underlättar tvättprocessen

Det krävs att fettpartiklarna är små för att man ska få en dispersion. Mekanisk bearbetning slår sönder fettet i mindre delar. Då kommer amfifilmolekylerna åt att bädda in fettpartiklarna.

Fyra typer av detergenter

Detergenter är amfifiler med en opolär del och en polär.

Den opolära "svansen" är alltid ett kolväte, eller möjligen ett par kolvätekedjor. Kolväten är typiskt opolära ämnen som skyr vatten. Ju längre kolvätet är, desto mer opolära egenskaper får molekylen som helhet. Vanligtvis är kolvätekedjan ganska lång.


Klasser av ytaktiva ämnen: icke-joniska, anjoniska, katjoniska och zwitterjoniska
"Tenside haben hyrophile und hydrophobe Enden" av Roland.chem" (CC BY-SA 3.0)

Det polära "huvudet" kan vara av olika typer. På tvättmedels- eller diskmedelsförpackningen brukar den ungefärliga sammansättningen av de olika typerna vara angiven.

Icke-joniska detergenter

Icke-joniska detergenter har en polär grupp som inte är en jon.

Ett vanligt exempel är PEG, polyetylenglykol, som har formeln H−(O−CH2−CH2)n−OH. OH-gruppen är oladdad, men starkt polär på grund av att den höga elektronegativiteten hos syreatomen attraherar elektronmolnet från väteatomen så att syreatomen får en negativ och väteatomen för en positiv nettoladdning.

Anjoniska detergenter

Anjoniska detergenternas polära grupp är en negativ jon. Typiska detergenter är alkylbensensulfonater med den allmänna formeln R–C6H4–SO3, där R är en kolvätekedja.

Exempel är natriumsaltet av dodekylbensensulfonat, C12H25-C6H4-SO3Na.

Katjoniska detergenter

Katjoniska detergenter liknar anjoniska sådana, men den polära gruppen utgörs i stället av en positiv jon. Jonen kan vara ett ammoniumsalt (R-NH4+) eller ett kvarternärt ammoniumsalt (R4N+).

Zwitterjoniska detergenter

En zwitterjon är en positiv och en negativ jon på samma molekyl. Den katjoniska delen är en primär, sekundär eller tertiär amin eller en kvaternär ammonium-katjon. Den anjoniska delen är ofta sulfonat eller ammonium-karboxylat, men det finns många varianter.

Jämvikt

Jämvikt bygger på att en reaktion sker i framriktningen och tillbakariktningen samtidigt och att reaktionshastigheterna är lika stora. Det innebär att det totalt sett inte sker någon förändring, trots att reaktionerna hela tiden pågår. Man säger att jämvikten är dynamisk därför att det är en pågående process.

Med reaktionsformel så ser jämvikten mellan ämne A och ämne B ut på följande sätt:

A ⇄ B

En liknelse för att förklara jämvikten

Föreställ dig att en hink med vatten står under kranen som är öppen. Men det finns ett hål i hinkens botten där vatten rinner ut. De reaktioner vi tittar på är tillförsel av vatten till hinken (framriktningen) och bortförsel av vatten från hinken (tillbakariktningen).

Vatten utanför hinken motsvarar A i jämvikten ovan, och vatten inuti hinken motsvarar B. Vi kan då skriva jämvikten med ord på följande sätt:

vatten utanför hinken (A) ⇄ vatten inuti hinken (B)

Vi öppnar kranen

Innan vi öppnar kranen, så är hinken tom, men så snart vi öppnar kranen börjar hinken fyllas med vatten. I början är vattennivån låg och det rinner inte ut vatten genom hålet lika snabbt som vatten fylls på från kranen. Det innebär att vattennivån i hinken ökar. Jämvikten har inte ännu ställt in sig.


Vid det högre vattenflödet från kranen till hinken (höger bild), så stabiliseras vattenytan på en högre nivå.
Bild: Svante Åberg

Men ju högre vattennivån blir, desto snabbare rinner vatten ut genom hålet. Till slut rinner vatten ut lika snabbt som det fylls på.

Detta tillstånd får man vid en bestämd vattennivå i hinken som svarar mot ett visst tryck hos vattnet. Denna nivå är jämviktsnivån.

Trots att vi har pågående reaktion i framriktningen (A → B) och samtidigt i tillbakariktningen (A ← B), så är vattennivån stabil. Detta stabila tillstånd, trots pågående reaktioner, kallas dynamisk jämvikt.

Vi ändrar flödet

Om vi sedan skulle ändra kranen så att det tillförs vatten snabbare eller långsammare, så skulle vattennivån i hinken börja förändras igen. Så småningom skulle en ny jämvikt ställa in sig på en annan vattennivå.

Ett högt flöde från kranen ger en hög jämviktsnivå i hinken, ett lågt flöde ger en låg jämviktsnivå.

Exempel på jämvikter

Esterjämvikten

Man kan tillverka väldoftande luktämnen genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra → ester + vatten

Från början finns ingen ester och inget vatten, bara alkohol och syra. Reaktionen sker därför bara åt höger. Men när det väl har bildats en del ester och vatten, så börjar det ske en reaktion åt andra hållet så att alkohol och syra återbildas. Men tillbakareaktionen är långsam i början eftersom det finns så lite ester och vatten som kan reagera.

alkohol + syra ← ester + vatten (långsam i början)

Med tiden bildas det alltmera ester och vatten, vilket gör att tillbakareaktionen blir snabbare. Samtidigt minskar mängden alkohol och vatten, vilket gör att framåtreaktionen blir långsammare. Till slut är tillbakareaktionen lika snabb som framåtreaktionen. Då har dynamisk jämvikt ställt in sig.

alkohol + syra ⇄ ester + vatten

Löslighetsjämvikt

Salter är lösliga i vatten, men bara upp till en viss gräns. När saltlösningen blivit mättad, så är systemet i jämvikt. Exempel på ett salt är natriumklorid, det vill säga vanligt koksalt.

NaCl(s) ⇄ Na+ + Cl

En sak som är speciell i detta fall är att koncentrationen av salt i fast form är konstant, oberoende av hur mycket fast salt vi har. Det innebär att reaktionen i framriktningen alltid är lika snabb.

Däremot varierar koncentrationen av natriumjoner och kloridjoner. I början finns inga natrium- och kloridjoner i lösning. Då sker bara reaktionen i framriktningen.

Men ju mer natrium- och kloridjoner som går i lösning, desto snabbare blir tillbakareaktionen. Till slut faller koksalt ut lika snabbt som det går i lösning. Då har vi fått dynamisk jämvikt.

Jämviktsläget

Massverkans lag

Massverkans lag anger att när ämnen reagerar med varandra, så är reaktionshastigheten proportionell mot koncentrationen av de partiklar som reagerar. Det är en statistisk effekt som kommer av att en kemisk reaktion bara kommer till stånd om de reagerande partiklarna kolliderar. Om koncentrationen av partiklar är hög, så blir det många kollisioner per sekund. Då är det också fler partiklar som reagerar varje sekund – reaktionshastigheten blir hög.

I en jämvikt sker reaktion både i framriktningen (åt höger) och i tillbakariktningen (åt vänster). Jämviktsläget beror på reaktionshastigheten åt höger i jämförelse med den åt vänster. Jämvikt fås när hastigheten åt höger och åt vänster är lika. Det betyder att lika mycket bildas som det som förbrukas. Nettoförändringen blir noll.

Man har så kallad dynamisk jämvikt. Ordet dynamisk anger att reaktionerna hela tiden pågår. Men i och med att inga nettoförändringar sker, så har man jämvikt.

Sannolikheten för kemisk reaktion vid en kollision

Det är emellertid inte varje kollision som leder till kemisk reaktion. Kemisk reaktion innebär att bindningar bryts i den gamla partikeln och nya skapas som ger ett nytt ämne. Men oftast studsar partiklarna bort från varandra utan att reagera. Om partiklarna inte är rätt orienterade i förhållande till varandra vid kollisionen, så sker ingen kemisk reaktion.

Aktiveringsenergin måste övervinnas för att reaktion ska ske

Inte heller sker någon reaktion om kollisionsenergin är för liten. Rörelseenergin i kollisionen måste övervinna den energitröskel det innebär att bryta de gamla bindningarna. Inte förrän dessa är brutna kan nya bildas. Denna energitröskel benämns aktiveringsenergi.

När energinivåerna skiljer, så påverkar det jämviktsläget

Om ämnena på ena sidan i reaktionsformeln är energirikare än ämnena på andra sidan, så är energitröskeln olika stor för reaktionen åt höger respektive åt vänster. (Figur som visar ett sådant exempel ska infogas här.)

När framåt- och bakåtreaktionen sker olika lätt, så påverkar det jämviktsläget. Om till exempel framåtreaktionen är kraftigt exoterm, så är energitröskeln i framriktningen låg och en stor andel av kollisionerna leder till reaktion. Men då blir samtidigt energitröskeln för reaktion i bakåtriktningen hög. Det krävs en hög koncentration av partiklar i högerledet av jämviktsreaktionen för att reaktionshastigheten åt vänster ska bli lika hög som den åt höger. En starkt exoterm jämvikt brukar därför vara starkt förskjuten åt höger.

Jämviktskonstanten är ett mått på jämviktsläget

För att få ett mått på jämviktslägen behöver man få en siffra på hur den aktuella kemiska reaktionen ställer in sig. Värdet hos jämviktskonstanten K återspeglar jämviktsläget. Ju större konstanten är, desto mer förskjuten åt höger är jämvikten. Exempel på en jämvikt som är väldigt starkt förskjuten åt höger är reaktionen mellan vätgas och syrgas då vatten bildas:

2 H2 + O2 ⇄ 2 H2O, K = 3,2·1081 M–1

En jämviktskonstant som är nära noll tyder på en jämvikts som är starkt förskjuten åt vänster. Exempel på en jämvikt som är starkt förskjuten åt vänster är vattnets autoprotolys:

2 H2O ⇄ H+ + OH, K = 1,0·10–14 M2 (lösningsmedlet vatten enhetslöst)

Exempel på en jämvikt som inte är så starkt förskjuten åt någotdera hållet är esterjämvikten:

alkohol + syra ⇄ ester + vatten, K ≈ 4

Le Chateliers princip

Henri Le Chatelier var en fransk kemist under senare delen av 1800-talet. Han arbetade som gruvingenjör i franska statens tjänst och blev så småningom professor, därefter ledamot i både Franska vetenskapsakademin och utländsk ledamot i svenska Vetenskapsakademien. Bland annat genomförde han studier över kemisk jämvikt. Han kom då fram till den princip som bär hans namn:

Om ett kemiskt system, där jämvikt råder, påverkas av en förändring i koncentration, temperatur eller totaltryck, kommer jämvikten att ändras så att förändringen motverkas.

Den kemiska jämvikten gör alltså motstånd mot förändringar, men kompenserar inte helt för den yttre påverkan som systemet utsatts för. Om till exempel etanol ingår som ett reagerande ämne i en jämvikt, och vi tillsätter mera etanol, så kommer reaktionen efter störningen av förbruka etanol. Men det blir inte riktigt hela tillsatsen av etanol som förbrukas, utan halten etanol i blandningen kommer faktiskt att vara lite högre sedan den nya jämvikten har ställt in sig.

Exempel på tillämpning av Le Chateliers princip

Estrar är väldoftande ämnen som kan framställas genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra ⇄ ester + vatten

Esterjämvikten är inte så starkt förskjuten åt höger. För att driva jämvikten hårdare åt höger kan man ta bort vatten som bildats. Det kan ske genom att man tillsätter torkmedel av till exempel vattenfri natriumsulfat. Natriumsulfatet binder upp vattnet så att det inte längre är tillgängligt i esterjämvikten.

Det vatten som tas bort ersätts, enligt Le Chateliers princip, genom att reaktionen går åt höger. Det innebär att ester bildas, samtidigt som alkohol och syra förbrukas. Det nya vatten som bildas tas också upp av torkmedlet, så reaktionen kan fortsätta ytterligare åt höger så att ännu mer ester bildas.

Estrar är opolära ämnen som är olösliga i vatten. Estern flyter därför som ett skikt ovan på vattenlösningen. Däremot är alkoholen och syran vattenlöslig. När man är nöjd med reaktionen, så kan skiktet av ester på ytan dekanteras av och man får ester i ganska ren form.

Exempel med bildning av ammoniak ur kvävgas och vätgas

Ett exempel är reaktionen när kvävgas reagerar med vätgas till ammoniakgas i den så kallade Haberprocessen:

N2(g) + 3 H2(g) ⇄ 2 NH3(g) + 92 kJ

Detta är en jämvikt mellan ämnen i gasform där vi har 4 delar gas i vänsterledet och 2 delar gas i högerledet. Reaktionen åt höger halverar antalet mol gas, vilket ger minskat gastryck om volymen hålls konstant. Reaktionen åt höger är exoterm, vilket innebär att inneboende energi hos ämnena avges och ombildas till värme.

Vi ska nu tillämpa Le Chateliers princip på denna jämvikt med några olika fall. Utgångspunkten är att systemet är i jämvikt. Därefter rubbar jämvikten på något sätt. Sedan förutsäger åt vilket håll reaktionen kommer att ske.

Tillförsel av kvävgas eller vätgas

I reaktionsformeln finns kvävgas och vätgas i vänsterledet. Om vi pumpar in mer kvävgas eller vätgas, så blir det "för mycket" kvävgas/vätgas i vänster led i förhållande till jämviktsläget. Reaktionen kommer att gå åt höger så att kvävgas och vätgas förbrukas. Det leder till att det bildas ammoniak. Dessutom avges värme, vilket gör att temperaturen höjs i systemet.

Tillförsel av ammoniak

Om vi pumpar in ammoniak blir det "för mycket" ammoniak i högerledet. Reaktionen sker då åt vänster så att mängden ammoniak minskar och det bildas mera kvävgas och vätgas. Reaktionen är endoterm, det vill säga den förbrukar energi. Därför sjunker temperaturen.

Bortförsel av ammoniak

Om vi på något sätt kan ta bort ammoniak från reaktionsblandningen, till exempel med en reaktion som binder upp ammoniakgas så att den inte kan delta i jämvikten längre, så blir det "för lite" ammoniak i högerledet. Det leder till att reaktion sker åt höger för att ersätta ammoniak som försvunnit. Kvävgas och vätgas förbrukas så att mängden av dem minskar. Reaktionen åt höger är exoterm, vilket leder till att temperaturen ökar.

Vi värmer reaktionsblandningen

Genom att värma reaktionsblandningen kan vi öka dess temperatur. Enligt Le Chateliers princip reagerar då systemet för att motverka temperaturökningen. Reaktionen sker då i endoterm riktning, det vill säga åt vänster. Det medför att ammoniak förbrukas och det bildas kvävgas och vätgas.

Ökning av trycket genom att minska volymen

Detta är en gasjämvikt, vilket innebär att systemet är känsligt för ändringar i volymen. Gaskoncentrationen ökar när vi komprimerar gasen genom att minska volymen.

Detta leder till en ökning av gastrycket. Systemet reagerar genom att motverka tryckökningen. Eftersom det är 4 delar gas i vänsterledet, men bara 2 delar gas i högerledet, så leder en reaktion åt höger till att gastrycket minskar. Minskningen av volymen gör därför att kvävgas och vätgas förbrukas och ammoniak bildas. Samtidigt är reaktionen åt höger exoterm, vilket gör att temperaturen ökar.

Minskning av trycket genom att öka volymen

Detta är motsatsen till föregående fall. När volymen ökar, så minskar gastrycket. Systemet motverkar tryckminskningen genom att reaktionen sker åt vänster så att antalet mol gas ökar. Reaktionen åt vänster är endoterm, vilket ger sänkt temperatur.

Den nya jämvikten som ställer in sig

Även om systemet motverkar den rubbning av systemet som vi orsakade, så kan systemet inte fullt ut kompensera för den påverkan som vi orsakade.

Om vi till exempel pumpar in extra kvävgas, så sker reaktionen åt höger så att kvävgas förbrukas. Men koncentrationen kvävgas, sedan den nya jämvikten ställt in sig, kommer inte att återgå helt till den koncentration som rådde vid den ursprungliga jämvikten, utan det blir kvar en rest av den påverkan som vi skapade. Därför är koncentrationen av kvävgas aningen högre i den nya jämvikten.

Detta kompenseras av att koncentrationen av vätgas är något lägre i den nya jämvikten än i den ursprungliga. På motsvarande sätt blir koncentrationen av ammoniak något högre i den nya jämvikten, än i den ursprungliga.

Inverkan av trycket

Det som styr jämvikten, vad gäller de ingående ämnena, är ämnenas koncentrationer. Jämviktens läge har att göra med reaktionshastigheten åt höger i jämförelse med reaktionshastigheten åt vänster. Eftersom kemisk reaktion sker i samband med att partiklar kolliderar, så är hastigheten koncentrationsberoende. Högre koncentration, ger högre hastighet.

Det är bara gaser som påverkas av trycket. Det beror på att gaser komprimeras av ett högre tryck, men vätskor och fasta ämnen är nästan inte alls komprimerbara. Därför är effekten av tryck på jämvikten bara något som man behöver ta hänsyn till när man har gaser i systemet.

Exempelvis påverkas inte jämvikten mellan fast och löst natriumklorid av trycket.

NaCl(s) ⇄ Na+(aq) + Cl(aq)

NaCl(s) är ett fast ämne vars volym inte ändras märkbart vid ändrat tryck. Natriumjonerna och kloridjonerna i vattenlösning påverkas inte heller eftersom vattenvolymen inte påverkas av trycket, i varje fall inte så länge som vattnet är i vätskeform.

Fysikaliska reaktioner

Le Chateliers princip är utformad för kemiska jämvikter. Principen fungerar dock i princip även för fysikaliska förändringar, till exempel övergångar mellan olika aggregationsformer.

För fysikaliska förändringar blir dock bilden rätt komplicerad när man behöver ta hänsyn till att mekaniskt arbete utförs, till exempel när gaser expanderar. Även temperaturförändringar vid adiabatisk expansion eller kompression inverkar. Då är vi inne på termodynamik, vilket vi inte tar upp närmare just nu.

Litteratur

  1. Borén/Moll/Lillieborg "Kemiboken för högstadiet", Läromedelsförlagen, 1971.
  2. Shakhashiri, B. Z. "Chemical Demonstrations", University of Wisconsin Press: Madison, WI, 1985, Vol. 2. Pp. 6-8.
  3. The Synthesis and Properties of Soaps, @CSU Stanislaus
    http://wwwchem.csustan.edu/chem1002/soap.htm (2002-11-30)
  4. The Chemistry of Soaps, @CSU Stanislaus
    http://wwwchem.csustan.edu/chem1002/soapexp.htm (2002-11-30)
  5. Soap making, Al Durtschi
    http://waltonfeed.com/old/soaphome.html (2002-1130)
  6. Colonial Soap Making. Its History and Techniques., The Soap Factory
    http://www.alcasoft.com/soapfact/historycontent.html (2002-1130)
  7. Lye Soap, Kevin M. Dunn
    http://cator.hsc.edu/~kmd/caveman/projects/soap/index.html (2002-11-30)
  8. The Soap And Detergent Association Home Page, The Soap And Detergent Association
    http://www.sdahq.org/ (2002-11-30)

Fler experiment


jämvikt
Anden i flaskan
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Avdunstning och temperatur
Bestämning av antalet kristallvatten i kopparsulfat
Brus-raketen
Den frysande bägaren
Flaskor mun mot mun
Framställ väldoftande luktämnen
Fryspunktsnedsättning
Färgämnen i M&M
Försvinnande bläck
Gasvolym och temperatur
Gummi och lösningsmedel
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur smakar salmiak?
Innehåller koksaltet jod?
Kemi i en brustablett
Kemi i en plastpåse
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Luftfuktighet och rostbildning
Löslighet och pH - En extraktion
Maskrosen som krullar sig
Massverkans lag och trijodidjämvikten
Molnet i flaskan
När flyter potatisen?
Osmos i potatis
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Principen för dynamisk jämvikt
Reaktionshastighet med permanganat
Saltat islyft
Superabsorbenter i blöjor
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför äter vi Samarin?
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

vardagens kemi
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Bestäm CMC för diskmedel
Blev disken ren?
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Diska med äggula
Eld - varför brinner det?
Eldprovet
Enzymaktivitet i ananas
Enzymer i Tvättmedel
Ett gammalt tvättmedel, del 1: Salt ur björkaska
Ett gammalt tvättmedel, del 2: Tvål ur saltet
Ett målande experiment - att rengöra en målarpensel
Falu rödfärgspigment ur järnvitriol
Framställ en detergent
Framställ låglaktosmjölk
Fruktköttet får solbränna
Färga ullgarn med svampar
Färgämnen i M&M
Gore-Tex, materialet som andas
Gör din egen limfärg
Gör din egen tandkräm
Gör ditt eget läppcerat
Gör hårt vatten mjukt
Göra lim av kasein
Hockey-visir
Hur fungerar en torrboll?
Hur gör man kakan porös?
Hur moget är äpplet?
Hur smakar salmiak?
Håller bubblan?
Karbidlampan
Kemi i en brustablett
Kemisk vattenrening
Majonnäs - en emulsion
Maskrosen som krullar sig
Modellmassa av mjölk
Myggmedel - hur funkar det?
Målarfärgens vattengenomsläpplighet
När flyter potatisen?
Olja som lösningsmedel
Optiska Vitmedel
Osmos i ett ägg
Osynlig gas
Pektin och marmeladkokning
Pelargonens färg
Permanenta håret
Pulversläckare
Rengöra silver
Rostbildning och rostskydd
Skär sig majonnäsen?
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Superabsorbenter i blöjor
Surt regn
Syror och baser i konsumentprodukter
Såpbubblor
Tillverka din egen deodorant
Tillverka din egen glidvalla
Tillverka din egen tvål, del 1: Själva tvålen
Tillverka din egen tvål, del 2: Parfymera och färga tvålen
Tillverka ditt eget läppstift
Tillverka Falu rödfärg enligt gammalt recept
Tillverka papperslim
Tillverka rengöringskräm
Tvätta i hårt vatten
Utfällning av aluminium
Utvinna järn ur järnberikade flingor
Vad händer då något brinner?
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Vad är skillnaden mellan maskin- och handdiskmedel?
Varför färgas textiler olika?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför rostar järn och hur kan man förhindra det?
Varför slipper bilen varma yllekläder på vintern?
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Vattenrening
Visa ytspänning med kanel
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Ägget i flaskan
Ärg på en kopparslant
Äta frusen potatis