Massverkans lag och trijodidjämvikten

Tillhör kategori: jämvikt, kemiska reaktioner, livsmedel

Författare: Olov Hamqvist

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Irriterande Använd skyddsglasögon 

Tid för förberedelse: 10 minuter

Tid för genomförande: 10 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Utföres med normal varsamhet

Svårighetsgrad: Kräver viss labvana

Introduktion

Vanligt bordssalt innehåller jodid, som kan oxideras och påvisas med stärkelse som en blå färg. Man skulle tro att ju mer jodiden oxideras, desto mörkare blå färg. Men så är det inte. För att förklara hur det hänger ihop måste man använda det man kallar "massverkans lag".

Riktlinjer

Experimentet kan utföras som elevförsök eller demonstration.

Säkerhet

Klorin innehåller natriumhypoklorit och är starkt oxiderande. Lab-rock och skyddsglasögon måste användas. Akta ögon och hud!

Små mängder Klorin kan spolas ned i avloppsvattnet. Koksaltlösning är helt ofarligt att släppa ut i avloppsnätet.

Materiel

Förarbete

Beredning av en stärkelselösning kan sk på följande sätt:

  1. Tillsätt 1 tesked potatismjöl till 100 ml vatten i en bägare.
  2. Värm under omrörning stärkelselösningen. (*)
  3. Späd lösningen med kallvatten tills den är lättflytande.

(*) Kommentar: Stärkelselösningen kan även värmas i mikron, men försök då anpassa tiden så att uppslamningen värms nära kokning, men inte mera.

Utförande

Foto: © Svante Åberg
  1. Gör en mycket utspädd klorinlösning genom att blanda 1 ml Klorin med 100 ml vatten och röra om.
  2. Tillsätt koksalt med jod till en bägare så att det täcker botten.
  3. Tillsätt lite stärkelselösning till saltet så det blir uppblött. (Ingen blåfärgning pga inget I2).
  4. Tillsätt 2-3 droppar av den utspädda klorinlösningen. Vad händer?
  5. Tillsätt ytterligare droppar av den utspädda klorinlösningen. Vad händer?

Variation

Man kan även köra elektrolys på en jodberikad koksaltlösning med lite stärkelselösning i. Då kommer jodidjoner att oxideras och jod kommer att bildas. Jod och kvarvarande jodidjoner kan då bilda trijodidjoner som färgar lösningen blå.

  1. Tillsätt 6-7 skedar koksalt i ett U-rör. Så pass mycket att det blir en övermättad lösning med salt på botten av U-röret.
  2. Tillsätt stärkelselösning till U-röret. (Ingen blåfärgning pga inget I2).
  3. Sätt fast två grafitelektroder i U-röret.
  4. Koppla elektroderna till en strömkälla och vrid på till ungefär 10 - 15 V.
  5. Låt stå i 10-20 minuter.
  6. Vad händer? Färgförändring? Blå strimmor i saltet på botten kan urskiljas.

Förklaring

Stärkelse blåfärgas av trijodid (I3). Trijodid saknas i den ursprungliga lösningen. Trijodid står i jämvikt med jodid och jod och kan därför bara förkomma när både jodid och jod finns i lösningen samtidigt.

Trijodidjämvikten    I + I2 ⇄ I3   K = 7,2·102 M-1 

Genom tillsatsen av Klorin oxideras en del av jodiden (I) till jod (I2). Jodid och jod förekommer då samtidigt och man får trijodid. Men om man tillsätter för mycket Klorin förbrukas all jodid och då försvinner trijodiden igen.

Om man följer reaktionen från början till slut ser situationen ut så här.

jodid + jod ⇄ trijodid färg
Vid start: Trijodidjämvikten helt förskjuten åt vänster eftersom jod saknas  I   saknas   saknas  vit
Halvvägs: Trijodidjämvikten förskjuten åt höger pga stort värde på jämviktskonstanden K  I   I2   I3  blå
Slut: Trijodidjämvikten helt förskjuten åt vänster eftersom all jodid är förbrukad  saknas   I2   saknas  vit

I verkligheten finns även pentajodid (I5) med och kan blåfärga stärkelse, men den står i jämvikt med jodid och jod på samma sätt som trijodiden, så resonemanget är exakt detsamma.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Blåfärgning sker bara i närvaro av trijodid och/eller pentajodid

Stärkelse påvisas som bekant med jod. Det är dock jodid (I3) samt pentajodid (I5) som bildar det blå komplexet med stärkelse. Därför måste följande reaktioner ske:

Trijodid  I + I2  ⇄  I3   K = 7,2·102 M-1
Pentajodid  I + 2 I2  ⇄  I5   K = ...? M-2

I vanligt bordsalt finns joden enbart som jodidjoner, därför blir det först ingen blåfärgning. När sedan en liten mängd Klorin, som är ett oxidationsmedel, tillsätts oxideras 2 I till I2 (jod). Klor är ju ett starkare oxidationsmedel än jod. Jämvikterna ovan blir ganska förskjutna åt höger och det bildas I3 samt I5 som bildar det blå komplexet med stärkelse.

Tillsätts mer Klorin (hypokloritjoner, ClO) avfärgas blåfärgningen. Detta beror på att det blir brist på I enligt formeln nedan där Cl reduceras och I oxideras:

ClO + 2 I + H2O ⇄ 2 OH + Cl + I2

Eftersom hypoklorit sönderfaller till klorgas kan man alternativt, och förenklat, beskriva reaktionen som att klorgas från Klorin oxiderar jodidjonerna till jod enligt följande formel:

2 I + Cl2 ⇄  I2 + 2 Cl

Då kan inte I3 eller I5 bildas längre eftersom jämvikterna med I och I2 förskjuts helt åt vänster.

Kemisk jämvikt - massverkans lag

Många kemiska reaktioner är reversibla och kan alltså gå åt båda hållen. Detta visar man ofta med dubbelpilar. Vid jämviktsberäkningar använder man sig av massverkans lag och tecknar en jämviktsekvation. Den tecknas som en kvot där täljaren erhålls genom att man multiplicerar produkternas koncentrationer med varandra. I nämnaren multiplicerar man reaktanternas koncentrationer med varandra. Kvoten ger en jämviktskonstant som betecknas med K. Se ex. nedan:

Exempel 1: A + B  ⇄  C + D K = ([C]·[D]) / ([A]·[B])  
Exempel 2: I + I2  ⇄  I3 K = [I3] / ([I]·[I2]), enhet M−1
Exempel 3: I3 + 2 I2  ⇄  I5 K = [I5] / ([I3]·[I2]2), enhet M−2

I exempel 3 är det 2 st I2, vilket är samma sak som I2 + I2. Därför kvadrerar man den koncentrationen i beräkningen. Enheten på K varierar beroende på hur jämviktsekvationen ser ut. I exempel 2 ovan blir det: M/(M·M) = M−1. I exempel 3 blir det M/(M·M·M) = M−2.

Le Chatelier´s princip

Henry Louis Le Chatelier och Karl Ferdinand Braun kom på var sitt håll fram till att om man ändrar koncentrationen, temperaturen, volymen eller trycket i ett kemiskt system vid jämvikt så sker en nettoreaktion och förskjutning av jämvikten som delvis motverkar förändringen. Denna princip används ofta i kemisk industri för att öka mängden produkt i reversibla reaktioner.

Koncentration

Om man förändrar koncentrationen av reaktanter eller produkter i en kemisk reaktion som uppnått jämvikt kommer den reversibla reaktionen att drivas åt det håll som motverkar denna förändring. Om man hela tiden plockar bort produkten/produkterna i en jämvikt förskjuts den åt höger. Ökar man koncentrationen på en eller flera reaktanter så förskjuts jämvikten också åt höger. Minskar man istället koncentrationen hos reaktanterna eller ökar koncentrationen av produkterna så får man en förskjutning av den reversibla reaktionen åt vänster. Som exempel på detta kan vi ta reaktionen mellan väte och jod som bildar vätejodid.

H2 + I2  ⇄ 2 HI

Tillsätter man mer väte till reaktionen när jämvikt råder så förskjuts jämvikten åt höger och mängden vätejodid ökar. Chansen för fler kollisioner mellan väte och jod ökar om koncentrationen ökar. Minskar man däremot koncentrationen av någon av reaktanterna så förskjuts jämvikten åt vänster istället och mindre vätejodid erhålls.

Temperatur

Vid exoterma reaktioner förskjuts jämvikten åt vänster om man ökar temperaturen. Sänker man däremot temperaturen för en exoterm reaktion så förskjuts den åt höger och man får ett högre utbyte (mer produkt). Reaktionshastigheten är ju dock lägre ju lägre temperaturen är. Ett exempel på detta är Haber-Boschprocessen som framställer ammoniak ur kväve och väte enligt följande reaktionsformel:

N2 + 3 H2  ⇄ NH3 + 92 kJ

Reaktionen är alltså exoterm och jämvikten förskjuts åt vänster ju mer man höjer temperaturen.

Tryck

En tryckändring påverkar jämviktsläget i en reversibel reaktion där substansmängden gas är olika på de båda sidorna i reaktionsformeln. Om totaltrycket ökar så förskjuts jämvikten så att den totala substansmängden gasformiga ämnen minskar. Om totaltrycket istället minskar så förskjuts jämvikten så att den totala substansmängden gasformiga ämnen ökar. Haber-Boschprocessen är även ett exempel på detta och gynnas av en tryckökning eftersom det är fler mol gas på vänster sida än på höger sida i reaktionsformeln.

N2 + 3 H2  ⇄ NH3

I reaktioner där det är lika många mol gas på båda sidor, (se exempel nedan) blir det däremot inte någon förskjutning av jämviktsläget vid tryckförändringar.

H2 + I2  ⇄ 2 HI

Jodometriska redoxtitreringar

All jodometrisk titrering bygger på att så länge det finns kvar trijodidjoner i lösningen man titrerar finns den blå färgen som bildas tillsammans med stärkelselösning kvar. När man sedan har reducerat joden i trijodid till jodid försvinner den blå färgen. Man använder natriumtiosulfatlösning vid jodometrisk titrering. Tiosulfatjonerna reducerar jod till jodid enligt formeln:

I2 + 2 S2O32− → 2 I + S4O62−

Eftersom trijodidjoner ger blå färg med stärkelse används stärkelselösning som indikator. Så fort reaktionen ovan har startat finns det ju både jod och jodidjoner och det kan därför bildas trijodidjoner. När all jod har förbrukats kan inte längre trijodid bildas och den blå färgen har försvunnit. Med denna metod kan man även göra analyser av andra ämnen. Exempel på det är när man skall bestämma halten koppar i ett mynt eller halten C-vitamin i olika fruktsafter. Om halten koppar i ett mynt skall bestämmas kan man lösa upp det först med hjälp av salpetersyra och späder sedan lösningen till en bestämd volym. Sedan tillsätter man fast kaliumjodid i överskott och följande reaktion sker:

2 Cu2+ + 4 I → 2 CuI(s) + I2

Joden som bildas kan sedan titreras med tiosulfatjoner och mängden koppar kan bestämmas eftersom de har följande molförhållanden:

2 mol Cu2+ ⇔ 1 mol I2
1 mol I2 ⇔ 2 mol S2O32−

vilket ger:

1 mol Cu2+ ⇔ 1 mol S2O32−

Vill man istället bestämma halten C-vitamin i olika fruktsafter tillsätter man surgjord kaliumjodatlösning tillsammans med kaliumjodid i överskott. Då bildas en brun lösning som innehåller trijodidjoner. Dessa kan sedan reduceras av C-vitaminet (askorbinsyran) enligt formeln längre ned:

Räkneexempel på kopparmynt

Kopparhalten i en "silverblank" 50-öring skall bestämmas. Myntet väger 3,69 g och löses i salpetersyra. Lösningen späds till 250 cm3. Volymen 25 cm3 tas ut från lösningen och fast kaliumjodid tillsätts i överskott. Lösningen, som är mörkbrun av jod, titreras med 0,10 M natriumtiosulfatlösning tills den blir gul. Sedan tillsätts stärkelselösning vilket ger en mörkblå färg. Titreringen fortsätter tills den blå färgen försvunnit. Nu har all jod förbrukats och därför tar det slut på trijodid som ger den blå färgen. Det gick åt 43,6 cm3 natriumtiosulfatlösning.

 1 mol Cu2+ ⇔ 1 mol S2O32−
c0,10 M  
V0,0436  dm3 0,025 dm3
n0,00436 mol 0,00436 mol
ntot  10·0,00436 mol = 0,0436 mol
M  63,5 g/mol
m  2,77 g

Halten koppar i myntet blir 2,77 / 3,69 = 0,751, ungefär 75 %.

Bestämning av C-vitamin i fruktsaft

Vill man istället bestämma halten C-vitamin i olika fruktsafter tillsätter man surgjord kaliumjodatlösning tillsammans med kaliumjodid i överskott. Då bildas en brun lösning som innehåller trijodidjoner.

IO3 + 8 I + 6 H+ → 3 I3 + 3 H2O

Dessa kan sedan reduceras av askorbinsyran enligt formeln:

I3 + C6H8O6 + H2O → 3 I + C6H8O7 + 2 H+

Återstoden av trijodidjonerna titreras med tiosulfatjonerna som reducerar trijodiden till jodid enligt formeln:

I3 +  S2O32− → 3 I + S4O62−

Även här tillsätts blåfärgande stärkelselösning som avfärgas när all trijodid tagit slut.

Kemikalierna i experimentet

Oxidationsmedlet Klorin

Klorin består främst av natriumhypoklorit (NaClO). Natriumhypoklorit kan tillverkas genom att låta klorgas regera med en lösning av natriumhydroxid (NaOH). Då sker reaktionen

2NaOH + Cl2 → NaCl + NaClO + H2O

Klorin kan användas för att rengöra bassänger, badrum, vittvätt mm. Det används som desinfektionsmedel. Desinfektion innebär att man tar bort eller dödar sjukdomsframkallande mikroorganismer som bakterier, virus och mikroskopiska svampar i så stor omfattning att de rengjorda föremålen inte sprider smitta. Hypoklorit (ClO) tar sig inte igenom bakteriernas cellväggar pga dess polaritet. Det gör däremot HClO som förändrar redoxförhållandena därinne i cellen vilket leder till att enzymet Glyceraldehyd 3-fosfat dehydrogenas inaktiveras. Detta enzym behövs i förbränningen av glukos. NaClO kan i vattenlösning sönderfalla till natriumhydroxid (NaOH) och hypokloritsyra (HClO) och kan därmed ta sig in i bakteriecellerna och slutföra sitt bakteriedödande arbete.

NaClO + H2O → Na+ + OH + HClO

Jod och jodid

Egenskaper

Jod (I2) är en violettfärgad ickemetall som tillhör grupp 17 i det periodiska systemet. Den har därmed 7 valenselektroner och bildar därför relativt lätt jodidjoner (I). Den är dock det svagaste oxidationsmedlet av grundämnena i grupp 17 och jodidjoner (I) kan därmed oxideras av både fluor, klor och brom. Jod finns som jodidjoner i jodberikat vanligt koksalt. Vi behöver få i oss en liten mängd jod för att kunna tillverka tyroxin som är ett hormon som tillverkas i sköldkörteln och styr ämnesomsättningen. Eftersom grundämnet jod (I2) är ett opolärt ämne löser det sig bättre i organiska lösningsmedel jämfört med vatten. Det är också den enda halogen som är i fast form i rumstemperatur (smältpunkt på 114°C), detta beroende på att den är störst i grupp 17 och får därmed starkare vdW-bindningar mellan molekylerna än F2 , Cl2 , Br2.

Trijodidjämvikten förbättrar jodens löslighet i vatten
Trijodidjämvikten
 I2 +  I  D  I3 
jod   jodidjoner   trijodid

Jod har ganska låg löslighet i vatten, men tillsammans med jodidjoner bildas ett komplex, I3, som har god löslighet. Det nyttjas för att bereda s.k. jodtinktur, som används t.ex. för desinficering av sår. Jämviktskonstanten för trijodidjämvikten är

K = [I3]/([I2][I]) = 7,0·102 M−1 (25 °C)

Fördjupning

Natriumklorid

Natriumklorid är en kemisk förening av natrium och klor med formeln NaCl. I dagligt tal säger via bara "salt" eller "koksalt" när vi talar om natriumklorid, men det är bara ett av många olika salter som existerar. Koksalt är ett lättlösligt salt. Det används i matlagningen för smaksättning, men det fungerar också som konserveringsmedel. Bakterier kan nämligen inte växa om salthalten blir för hög.

Det finns olika kvalitéer av natriumklorid.

  1. Råsalt - Om man samlar vattnet från t ex hav eller sjö i stora bassänger (s.k. saliner) och låter vattnet avdunsta kan man ta vara på det salt som naturligt finns i vattnet. I riktigt varma länder kan salt också utvinnas när naturliga saltöknar bildas. Bergssalt etc utvinns från berggrunden i speciella saltgruvor. Råsalt är ett orenat salt med stora korn, som man vanligen ser i form av ett grovsalt och det kan ha olika färgtoning.
  2. Natriumklorid - Den rena formen tillverkas genom att naturligt råsalt löses i vatten, kokas och omkristalliseras. Det kan också tillverkas kemiskt när klor får reagera med natrium, reaktionen är mycket häftig och utvecklar både starkt gulaktigt sken och intensiv värme. Saltet som bildas är ett fint, vitt kristalliniskt pulver eller färglösa, vitaktiga kristaller.
  3. Hushållssalt - Råsaltet renas, natriumklorid/renat råsalt ges tillsatser. Dagens hushållssalt känner vi igen som vitt, finkornigt och lättrinnande.

Förekomst

Både natrium och klor är mycket reaktiva ämnen och förekommer därför inte som rena ämnen i naturen. Eftersom natriumjonerna och kloridjonerna har motsatt elektrisk laddning attraheras de kraftigt till varandra och bildar då koksalt.

Natriumklorid finns i stora mängder i haven. Ursprungligen kommer saltet från berg som vittrat och lakats ur av vatten. Vattnet har runnit ned till havet där saltet blivit kvar. Havsvattnet avdunstar och bildar moln som sedan fäller sitt vatten över land. Vattnet ingår därför i ett kretslopp. Men koksaltet kan inte avdunsta. Därför stannar saltet kvar i haven.

Det händer att hav torkar in. Ett aktuellt exempel är Aralsjön i Centralasien. Ett annat exempel som inträffade för ungefär 6 miljoner år sedan var när Medelhavet blev torrlagt därför att det tappade kontakten med Atlanten. Vattnet avdunstande och det bildades en saltskorpa som på sina ställen var flera hundra meter tjock. Saltavlagringarna begravdes sedan så att de nu är gömda i underjorden. Sådana geologiska händelser kan föra bort natriumklorid från havsvattnet, och det har hänt många gånger i jordens historia.

Utvinning av salt sker dels genom brytning i gruvor där man har saltavlagringar, dels genom att låta havsvatten avdunsta och samla ihop saltet som blir kvar. Saltet är inte rent koksalt, för det finns även mindre mängder av bland annat magnesiumklorid i havsvattnet. Salthalten i de stora världshaven ligger kring 2,5 – 3,5 %. Av detta salt utgör natriumkloriden cirka 78 %.

Användning

NaCl har i alla tider varit av mycket stor kommersiell betydelse och är nu en av de allra viktigaste industriråvarorna. Den är råvara för praktiskt taget alla natrium- och klorföreningar och förbrukas dessutom i stora mängder som krydda och konserveringsmedel för olika matvaror.

Koksaltet blev tidigt en av världens viktigaste handelsvaror. Under medeltiden bröts stora mängder salt i gruvor i Tyskland och Österrike. Saltet forslades sedan norrut via den så kallade Saltvägen, Via Salaria. När Indien frigjorde sig från Storbritannien demonstrerade man symboliskt mot den Brittiska överhögheten med att genomföra en marsch som protest mot saltskatten.

Koksalt används som issmältningssalt (vägsalt) på våra vägar vintertid. Saltet sänker smältpunkten för is, vilket gör att om temperaturen bara ligger på enstaka minusgrader så kan isen töa bort. Problematiskt är att saltet skadar grundvatten och växtlighet och att det orsakar kraftig rostbildning på fordon och släp som inte har ett fullgott rostskydd.

Egenskaper hos natriumklorid

Kristall av natriumkloridtyp,
med kubiskt gitter.

Koksalt, NaCl, kristalliserar vanligen i kuber med en struktur av natruimkloridtyp. Om kristallisationen sker ur vattenlösning uppstår lätt vatteninneslutningar som vid upphettning sprängs med ett knastrande ljud, saltet ”dekrepiterar”. Smältpunkten för natriumklorid är 801 ºC, kokpunkten 1440 ºC. Som mineral kallas natriumklorid ofta stensalt och är ofta blåfärgat. Den blå färgen beror på närvaron av så kallade F-centra, som troligen uppstått genom strålning från radioaktiva kaliumatomer, 40K, som är inbyggda i kristallen.

Ren natriumklorid är inte hygroskopisk, men handelns koksalt är ofta förorenad av hygroskopiska magnesiumsalter som gör att saltet tar upp fukt från luften.

Fysiologisk saltlösning i människor och djur

Man är ganska säker på att livet en gång uppstod i haven och att levande varelser därefter sökte sig upp på land. Djurens kroppsvätskor innehöll salt, och det är ett arv som vi har från forntiden. Salthalten i kroppens celler är 0,9 %. En saltlösning med denna koncentration kallas för fysiologisk saltlösning. Om man injicerar vätska i kroppens vävnader eller i blodomloppet måste salthalten vara fysiologisk. Annars sker osmos som antingen får cellerna att torka ut eller att svälla och kanske spricka.

Osmos är när vatten vandrar genom ett halvgenomträngligt membran från den sida där det finns mest vatten, vilket är på den sida av membranet som salthalten är lägst, och vandrar till den andra sidan av membranet där vattenhalten är lägre och salthalten högre. Om man injicerar rent vatten kommer cellerna att ta upp vatten, svälla och kanske spricka. Om man injicerar vätska med för hög salthalt skrumpnar cellerna när vattnet vandrar ut ur dem.

Man kan utnyttja att saltet drar ut vatten ur cellerna för att konservera matvaror. Bakterier, mögel och annat kan då inte växa eftersom de torkar ut. Då förstörs inte heller maten. Salt sill från Norge och salt fläsk från Amerika var basföda för en stor del av befolkningen i Sverige förr i tiden. Nu vet vi att det inte är nyttigt att äta för mycket salt. Saltet tenderar att höja blodtrycket. Det har också med osmosen att göra.

Men kroppen behöver salt. När människor och djur inte har tillgång till salt så blir saltet åtråvärt. Älgar och renar är förtjusta i saltstenar som man sätter upp. De får inte i sig så mycket salt i den mat de äter naturligt.

Allvarlig saltbrist kallas hypnoatremi och är ett tillstånd där halten natriumjoner och blodet är för lågt. Normalt har njurarna kapacitet att utsöndra överflödigt vatten, men det har hänt att personer i samband med sportutövning eller bantning har druckit extremt mycket vatten under kort tid och råkat ut för vattenförgiftning. Kroppens celler tar då upp vatten och sväller till onormal storlek. Symptom är desorientering, huvudvärk och yrsel som uppstår när blodflödet hindras. Man blir illamående och talet blir sluddrigt. Tillståndet är allvarligt och kan i sällsynta fall leda till döden. LD50 är den dos som gör att 50 % av personerna avlider. För vatten är LD50 ≈ 6 liter för en vuxen person.

Motsatsen, för högt intag av koksalt, är också farligt. För natriumklorid är LD50 ≈ 12 g NaCl/kg kroppsvikt. Om du t.ex. väger 50 kg så är risken att avlida 50 % om du äter 600 g koksalt.

Jod

Jod är ett grundämne

Jod är ett grundämne som i ren form består av blåsvarta glänsande kristaller. Den kemiska beteckningen är I, som kommer av det grekiska ordet ioeidēs, som betyder violett. Som grundämne bildar joden tvåatomiga molekyler, I2(s), som även tål uppvärmning till gasform, I2(g).

Jod sublimerar i rumstemperatur, dvs. övergår direkt mellan fast form och gasform utan mellansteget vätskeform. Det fasta ämnet övergår till en violett gas som har en irriterande lukt och är mycket irriterande för ögon och slemhinnor. När jodgasen kondenserar igen bildar den lätt kristaller.

Förekomst

Jod förekommer sparsamt i form av i nitrathaltig jord, i olje- och saltbrunnar och i havsvatten. Grundämnet anrikas naturligt i bland annat tång, men i havssalt är halterna generellt sett låga. Man kan också framställa ren jod bl a genom att låta kaliumjodid reagera med koppar(II)sulfat.

Jod är desinficerande

På grund av sin oxiderande förmåga är jod antiseptiskt, dvs. bakteriedödande. Jodlösningar används för att tvätta sår. Förr använde man det ofta på människor, men nu är det vanligast i samband med djurhållning. Det finns att köpa på apoteket som 1 %-ig lösning under namnet Jodopax. Då använder man en lösning av jod och kaliumjodid i vatten. Jodid reagerar med joden till trijodid, som har mycket högre löslighet i vatten än ren jod. På så vis får man en mer koncentrerad och effektiv bakteriedödande lösning.

Det vanligaste saltet av jod är kaliumjodid med formeln KI (eller K+I). I den desinficerande jodspriten har man blandat jod och kaliumjodid för att bilda trijodid:
I2 + K+I ⇄ K+I3

Jod i ögat är däremot allvarligt och kan skada hornhinnan och till och med orsaka blindhet. Skölj genast ögat i rinnande vatten och tag kontakt med läkare. Inandning av jodgas är inte heller bra.

Löslighet i vatten och organiska lösningsmedel

Lösligheten av I2 i vatten är dålig, men på grund av sin starka färg kan man ändå se en svag brunfärgning i vattnet av löst jod. Lösligheten i organiska lösningsmedel är mycket större och jod antar där en intensivt violett färg.

Man kan enkelt demonstrera löslighetsfördelningen genom att till en vattenlösning av jod tillsätta en liten mängd bensin eller annat organiskt lösningsmedel. Praktiskt taget all jod kommer då att samla sig det organiska lösningsmedlet, vilket syns tydligt på färgen.

Jod löser sig i kroppsfett

Om man får jod (grundämnet, I2) på huden blir huden brunfärgad och fläckarna går inte att ta bort. Joden löser sig lätt i hudens fett, men med tiden försvinner fläcken av sig själv. Mindre fläckar är inte hälsofarliga, men man bör undvika kontakt med jod så långt som möjligt. Joden kan irritera huden.

Framkalla fingeravtryck

Genom att jod både är kraftigt färgad och har hög löslighet i fett, så kan jod användas för att framkalla fingeravtryck. Det räcker med att trycka fingret mot ett skrivpapper för att få ett avtryck i fett som går att framkalla. Framkallningen görs genom att hålla papperet över lite jod som får förånga till gas. Fingeravtrycket blir genast synligt när det brunfärgas av joden som löser sig i fettet.

Undvik att jodångor sprid så att man riskerar att andas in dem. Tänk också på att det väldigt lätt blir smutsigt av jod som kondenserar på kalla ytor. En bra idé är att värma joden i en liten bägare där man också lägger papperet med fingeravtrycket. Lägg ett lock på bägaren när du värmer försiktigt. Det räcker med en enda jodkristall och ganska svag värme.

Jodtillsats i koksaltet förhindrar struma

Man måste skilja på grundämnet jod (I2) och jod i form av joner, t.ex. i saltet kaliumjodid (K+I). Jodidjonerna är inte alls farliga, utan är tvärtom något som vi behöver i kroppen, om än i liten mängd.

Jodbrist (egentligen jodidbrist) är vanlig i delar av värden. Det yttrar sig som struma och kretinism. Struma är när sköldkörteln blir förstorad och man kan få svårt att svälja, heshet och andra obehag. Kretinism är en form av utvecklingsstörning. För att motverka jodbrist säljer man jodberikat koksalt.

Det livsviktiga grundämnet jod finns i två hormoner; tyroxin och trijodtyronin. Hormonerna reglerar ämnesomsättningen och sköter kroppens tillväxt och utveckling. De bildas i sköldkörteln och brist i barndomen leder till att den mentala och fysiska tillväxten hämmas och kan resultera i dvärgväxt. Brist på jod senare i livet kan orsaka struma och därför bestämdes på 1920-talet att hushållssaltet skulle berikas med jod. Rekommenderat intag för vuxna är 150 mikrogram per dag.

Den jod som tillsätts koksaltet i Sverige är i form av kaliumjodid, KI, ett vitt salt som till utseendet liknar koksalt. Kaliumjodid avdunstar inte, men jod i molekylform, I2 sublimerar, dvs. avdunstar. Om koksalt får stå öppet, särskilt om det blir något fuktigt, så kan jodiden oxideras till jod. Den bildade joden kan då avdunsta. Koksalt som förvaras fel kan alltså förlora innehållet av jod.

I en del länder är jodinnehållet i salt av vissa varumärken mycket lågt. Det kan leda till hälsoproblem. Unicef har därför ett program för att upplysa befolkningen om behovet av jod och hur man kan agera för att få sitt jodbehov täckt. Eleverna i skolorna får lära sig att testa om det koksalt man använder innehåller jod. Sedan informerar eleverna sina föräldrar om detta så att man fortsättningsvis väljer att köpa salt som man vet innehåller jod.

Radioaktiv jod

123I är en radioaktiv isotop av jod som används inom den medicinska diagnostiken. Radioaktiv jod som intas ansamlas i sköldkörteln. Den gammastrålning som utsänds registreras och man får en bild av organet. Stråldoserna som används är så låga att de inte är farliga för patienten.

Vid radioaktiva utsläpp kan ibland jodisotopen jod-131 (131I) spridas. Den tas upp av kroppen och ger strålskador. För att hindra jod-131 att tas upp kan man mätta kroppen med den vanliga icke radioaktiva jodisotopen. Därför delar man ut jodtabletter till människor i riskområden. Flera isotoper bildas vid atomkärnklyvning, men det är endast 131I som har en sådan halveringstid (8 dygn) att den får större betydelse. Denna isotop spreds över stora områden vid kärnkraftsolyckan i Tjernobyl 1986.

Jod bryter ned ozonskiktet

Klorerade kolväten är ett miljöproblem eftersom de bidrar till att det livsviktiga skyddet av ozon på hög höjd bryts ned. Nu har man funnit att även jod bidrar till denna nedbrytning. Det har visat sig att jodmolekyler kan följa med enorma åskmoln som snabbt stiger uppåt mot stratosfären.

Jod är en halogen

Jod är en halogen, nära besläktad med klor och brom i grupp 7 i periodiska systemet. Jod är därför ett starkt oxidationsmedel. Jod verkar korroderande på metaller. Fläckar av jod på kläderna kan tas bort med hjälp av ett reducerande medel, t.ex. natriumtiosulfat.

Som alla grundämnena i grupp 7 tar jod lätt upp elektroner och bildar envärda joner:
I2 + 2 e → 2 I

Jod är en halogen, nära besläktad med klor och brom i grupp 7 i periodiska systemet. Halogener kallas de grundämnen som finns i grupp 7, näst längst till höger i periodiska systemet. Fluor, klor, brom och jod har 7 elektroner i sitt yttersta skal och är starka oxidationsmedel. De här grundämnena tar gärna upp en åttonde elektron och bildar envärda, negativa joner.

De har en stark, genomträngande lukt, är giftiga och frätande. Halogenernas reaktivitet avtar nedåt i gruppen, den är störst för fluor och minst för jod.

Mer fakta på avancerad nivå om jod kommer.

Trijodidjämvikten

Jod är ett grundämne som bildar tvåatomiga molekyler, I2(s), även i gasform. I fast form är jod blåsvarta glänsande kristaller och som gas är den violett. Jod är en halogen i grupp 7 i periodiska systemet och bildar därför envärt negativa joner, jodid:

I2+ 2 e → 2 I

Trijodid, ett komplex av jod och jodid

Jod och jodid bildar lätt komplexet trijodid (se kaliumtrijodid, KI3).

I2 + I → I3

Trijodidjämvikten
 I2 +  I   I3 
jod   jodidjoner   trijodid

I själva verket är reaktionen en jämvikt med jämviktskonstanten

K = [I3-]/([I2][I-]) = 7,1·102 M-1

Jämviktsläget

Det stora värdet på jämviktskonstanten visar att jämvikten är starkt förskjuten åt höger. Men det krävs närvaro av både jod och jodid för att komplexet I3- ska bildas. Det förutsätter att den kemiska miljön varken är starkt reducerande eller starkt oxiderande.

Vi kan räkna på detta om vi stuvar om formeln för jämviktskonstanten.

[I3-] = [I2][I-]·K = [I2][I-]·102·7,1 M-1

I starkt reducerande miljö förbrukas all jod i reaktionen I2+ 2 e → 2 I och insättning av [I2] = 0 M i formeln ger värdet [I3-] = 0 M. Detta driver trijodidjämvikten helt åt vänster.

På motsvarande sätt förbrukas i starkt oxiderande miljö all jodid i reaktionen 2 I → I2+ 2 e och insättning av [I] = 0 M formel ger värdet [I3-] = 0 M. Detta driver också trijodidjämvikten helt åt vänster.

Pentajodid bildas på motsvarande sätt

Jod och jodid bildar också komplexet pentajodid.

2 I2 + I → I5

Pentajodiden har också en analog jämvikt med jod och jodid. Även här förutsätter bildningen av pentajodid att miljön varken är starkt reducerande eller oxiderande.

Material på avancerad nivå kommer.

Jämvikt

Jämvikt bygger på att en reaktion sker i framriktningen och tillbakariktningen samtidigt och att reaktionshastigheterna är lika stora. Det innebär att det totalt sett inte sker någon förändring, trots att reaktionerna hela tiden pågår. Man säger att jämvikten är dynamisk därför att det är en pågående process.

Med reaktionsformel så ser jämvikten mellan ämne A och ämne B ut på följande sätt:

A ⇄ B

En liknelse för att förklara jämvikten

Föreställ dig att en hink med vatten står under kranen som är öppen. Men det finns ett hål i hinkens botten där vatten rinner ut. De reaktioner vi tittar på är tillförsel av vatten till hinken (framriktningen) och bortförsel av vatten från hinken (tillbakariktningen).

Vatten utanför hinken motsvarar A i jämvikten ovan, och vatten inuti hinken motsvarar B. Vi kan då skriva jämvikten med ord på följande sätt:

vatten utanför hinken (A) ⇄ vatten inuti hinken (B)

Vi öppnar kranen

Innan vi öppnar kranen, så är hinken tom, men så snart vi öppnar kranen börjar hinken fyllas med vatten. I början är vattennivån låg och det rinner inte ut vatten genom hålet lika snabbt som vatten fylls på från kranen. Det innebär att vattennivån i hinken ökar. Jämvikten har inte ännu ställt in sig.


Vid det högre vattenflödet från kranen till hinken (höger bild), så stabiliseras vattenytan på en högre nivå.
Bild: Svante Åberg

Men ju högre vattennivån blir, desto snabbare rinner vatten ut genom hålet. Till slut rinner vatten ut lika snabbt som det fylls på.

Detta tillstånd får man vid en bestämd vattennivå i hinken som svarar mot ett visst tryck hos vattnet. Denna nivå är jämviktsnivån.

Trots att vi har pågående reaktion i framriktningen (A → B) och samtidigt i tillbakariktningen (A ← B), så är vattennivån stabil. Detta stabila tillstånd, trots pågående reaktioner, kallas dynamisk jämvikt.

Vi ändrar flödet

Om vi sedan skulle ändra kranen så att det tillförs vatten snabbare eller långsammare, så skulle vattennivån i hinken börja förändras igen. Så småningom skulle en ny jämvikt ställa in sig på en annan vattennivå.

Ett högt flöde från kranen ger en hög jämviktsnivå i hinken, ett lågt flöde ger en låg jämviktsnivå.

Exempel på jämvikter

Esterjämvikten

Man kan tillverka väldoftande luktämnen genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra → ester + vatten

Från början finns ingen ester och inget vatten, bara alkohol och syra. Reaktionen sker därför bara åt höger. Men när det väl har bildats en del ester och vatten, så börjar det ske en reaktion åt andra hållet så att alkohol och syra återbildas. Men tillbakareaktionen är långsam i början eftersom det finns så lite ester och vatten som kan reagera.

alkohol + syra ← ester + vatten (långsam i början)

Med tiden bildas det alltmera ester och vatten, vilket gör att tillbakareaktionen blir snabbare. Samtidigt minskar mängden alkohol och vatten, vilket gör att framåtreaktionen blir långsammare. Till slut är tillbakareaktionen lika snabb som framåtreaktionen. Då har dynamisk jämvikt ställt in sig.

alkohol + syra ⇄ ester + vatten

Löslighetsjämvikt

Salter är lösliga i vatten, men bara upp till en viss gräns. När saltlösningen blivit mättad, så är systemet i jämvikt. Exempel på ett salt är natriumklorid, det vill säga vanligt koksalt.

NaCl(s) ⇄ Na+ + Cl

En sak som är speciell i detta fall är att koncentrationen av salt i fast form är konstant, oberoende av hur mycket fast salt vi har. Det innebär att reaktionen i framriktningen alltid är lika snabb.

Däremot varierar koncentrationen av natriumjoner och kloridjoner. I början finns inga natrium- och kloridjoner i lösning. Då sker bara reaktionen i framriktningen.

Men ju mer natrium- och kloridjoner som går i lösning, desto snabbare blir tillbakareaktionen. Till slut faller koksalt ut lika snabbt som det går i lösning. Då har vi fått dynamisk jämvikt.

Jämviktsläget

Massverkans lag

Massverkans lag anger att när ämnen reagerar med varandra, så är reaktionshastigheten proportionell mot koncentrationen av de partiklar som reagerar. Det är en statistisk effekt som kommer av att en kemisk reaktion bara kommer till stånd om de reagerande partiklarna kolliderar. Om koncentrationen av partiklar är hög, så blir det många kollisioner per sekund. Då är det också fler partiklar som reagerar varje sekund – reaktionshastigheten blir hög.

I en jämvikt sker reaktion både i framriktningen (åt höger) och i tillbakariktningen (åt vänster). Jämviktsläget beror på reaktionshastigheten åt höger i jämförelse med den åt vänster. Jämvikt fås när hastigheten åt höger och åt vänster är lika. Det betyder att lika mycket bildas som det som förbrukas. Nettoförändringen blir noll.

Man har så kallad dynamisk jämvikt. Ordet dynamisk anger att reaktionerna hela tiden pågår. Men i och med att inga nettoförändringar sker, så har man jämvikt.

Sannolikheten för kemisk reaktion vid en kollision

Det är emellertid inte varje kollision som leder till kemisk reaktion. Kemisk reaktion innebär att bindningar bryts i den gamla partikeln och nya skapas som ger ett nytt ämne. Men oftast studsar partiklarna bort från varandra utan att reagera. Om partiklarna inte är rätt orienterade i förhållande till varandra vid kollisionen, så sker ingen kemisk reaktion.

Aktiveringsenergin måste övervinnas för att reaktion ska ske

Inte heller sker någon reaktion om kollisionsenergin är för liten. Rörelseenergin i kollisionen måste övervinna den energitröskel det innebär att bryta de gamla bindningarna. Inte förrän dessa är brutna kan nya bildas. Denna energitröskel benämns aktiveringsenergi.

När energinivåerna skiljer, så påverkar det jämviktsläget

Om ämnena på ena sidan i reaktionsformeln är energirikare än ämnena på andra sidan, så är energitröskeln olika stor för reaktionen åt höger respektive åt vänster. (Figur som visar ett sådant exempel ska infogas här.)

När framåt- och bakåtreaktionen sker olika lätt, så påverkar det jämviktsläget. Om till exempel framåtreaktionen är kraftigt exoterm, så är energitröskeln i framriktningen låg och en stor andel av kollisionerna leder till reaktion. Men då blir samtidigt energitröskeln för reaktion i bakåtriktningen hög. Det krävs en hög koncentration av partiklar i högerledet av jämviktsreaktionen för att reaktionshastigheten åt vänster ska bli lika hög som den åt höger. En starkt exoterm jämvikt brukar därför vara starkt förskjuten åt höger.

Jämviktskonstanten är ett mått på jämviktsläget

För att få ett mått på jämviktslägen behöver man få en siffra på hur den aktuella kemiska reaktionen ställer in sig. Värdet hos jämviktskonstanten K återspeglar jämviktsläget. Ju större konstanten är, desto mer förskjuten åt höger är jämvikten. Exempel på en jämvikt som är väldigt starkt förskjuten åt höger är reaktionen mellan vätgas och syrgas då vatten bildas:

2 H2 + O2 ⇄ 2 H2O, K = 3,2·1081 M–1

En jämviktskonstant som är nära noll tyder på en jämvikts som är starkt förskjuten åt vänster. Exempel på en jämvikt som är starkt förskjuten åt vänster är vattnets autoprotolys:

2 H2O ⇄ H+ + OH, K = 1,0·10–14 M2 (lösningsmedlet vatten enhetslöst)

Exempel på en jämvikt som inte är så starkt förskjuten åt någotdera hållet är esterjämvikten:

alkohol + syra ⇄ ester + vatten, K ≈ 4

Le Chateliers princip

Henri Le Chatelier var en fransk kemist under senare delen av 1800-talet. Han arbetade som gruvingenjör i franska statens tjänst och blev så småningom professor, därefter ledamot i både Franska vetenskapsakademin och utländsk ledamot i svenska Vetenskapsakademien. Bland annat genomförde han studier över kemisk jämvikt. Han kom då fram till den princip som bär hans namn:

Om ett kemiskt system, där jämvikt råder, påverkas av en förändring i koncentration, temperatur eller totaltryck, kommer jämvikten att ändras så att förändringen motverkas.

Den kemiska jämvikten gör alltså motstånd mot förändringar, men kompenserar inte helt för den yttre påverkan som systemet utsatts för. Om till exempel etanol ingår som ett reagerande ämne i en jämvikt, och vi tillsätter mera etanol, så kommer reaktionen efter störningen av förbruka etanol. Men det blir inte riktigt hela tillsatsen av etanol som förbrukas, utan halten etanol i blandningen kommer faktiskt att vara lite högre sedan den nya jämvikten har ställt in sig.

Exempel på tillämpning av Le Chateliers princip

Estrar är väldoftande ämnen som kan framställas genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra ⇄ ester + vatten

Esterjämvikten är inte så starkt förskjuten åt höger. För att driva jämvikten hårdare åt höger kan man ta bort vatten som bildats. Det kan ske genom att man tillsätter torkmedel av till exempel vattenfri natriumsulfat. Natriumsulfatet binder upp vattnet så att det inte längre är tillgängligt i esterjämvikten.

Det vatten som tas bort ersätts, enligt Le Chateliers princip, genom att reaktionen går åt höger. Det innebär att ester bildas, samtidigt som alkohol och syra förbrukas. Det nya vatten som bildas tas också upp av torkmedlet, så reaktionen kan fortsätta ytterligare åt höger så att ännu mer ester bildas.

Estrar är opolära ämnen som är olösliga i vatten. Estern flyter därför som ett skikt ovan på vattenlösningen. Däremot är alkoholen och syran vattenlöslig. När man är nöjd med reaktionen, så kan skiktet av ester på ytan dekanteras av och man får ester i ganska ren form.

Exempel med bildning av ammoniak ur kvävgas och vätgas

Ett exempel är reaktionen när kvävgas reagerar med vätgas till ammoniakgas i den så kallade Haberprocessen:

N2(g) + 3 H2(g) ⇄ 2 NH3(g) + 92 kJ

Detta är en jämvikt mellan ämnen i gasform där vi har 4 delar gas i vänsterledet och 2 delar gas i högerledet. Reaktionen åt höger halverar antalet mol gas, vilket ger minskat gastryck om volymen hålls konstant. Reaktionen åt höger är exoterm, vilket innebär att inneboende energi hos ämnena avges och ombildas till värme.

Vi ska nu tillämpa Le Chateliers princip på denna jämvikt med några olika fall. Utgångspunkten är att systemet är i jämvikt. Därefter rubbar jämvikten på något sätt. Sedan förutsäger åt vilket håll reaktionen kommer att ske.

Tillförsel av kvävgas eller vätgas

I reaktionsformeln finns kvävgas och vätgas i vänsterledet. Om vi pumpar in mer kvävgas eller vätgas, så blir det "för mycket" kvävgas/vätgas i vänster led i förhållande till jämviktsläget. Reaktionen kommer att gå åt höger så att kvävgas och vätgas förbrukas. Det leder till att det bildas ammoniak. Dessutom avges värme, vilket gör att temperaturen höjs i systemet.

Tillförsel av ammoniak

Om vi pumpar in ammoniak blir det "för mycket" ammoniak i högerledet. Reaktionen sker då åt vänster så att mängden ammoniak minskar och det bildas mera kvävgas och vätgas. Reaktionen är endoterm, det vill säga den förbrukar energi. Därför sjunker temperaturen.

Bortförsel av ammoniak

Om vi på något sätt kan ta bort ammoniak från reaktionsblandningen, till exempel med en reaktion som binder upp ammoniakgas så att den inte kan delta i jämvikten längre, så blir det "för lite" ammoniak i högerledet. Det leder till att reaktion sker åt höger för att ersätta ammoniak som försvunnit. Kvävgas och vätgas förbrukas så att mängden av dem minskar. Reaktionen åt höger är exoterm, vilket leder till att temperaturen ökar.

Vi värmer reaktionsblandningen

Genom att värma reaktionsblandningen kan vi öka dess temperatur. Enligt Le Chateliers princip reagerar då systemet för att motverka temperaturökningen. Reaktionen sker då i endoterm riktning, det vill säga åt vänster. Det medför att ammoniak förbrukas och det bildas kvävgas och vätgas.

Ökning av trycket genom att minska volymen

Detta är en gasjämvikt, vilket innebär att systemet är känsligt för ändringar i volymen. Gaskoncentrationen ökar när vi komprimerar gasen genom att minska volymen.

Detta leder till en ökning av gastrycket. Systemet reagerar genom att motverka tryckökningen. Eftersom det är 4 delar gas i vänsterledet, men bara 2 delar gas i högerledet, så leder en reaktion åt höger till att gastrycket minskar. Minskningen av volymen gör därför att kvävgas och vätgas förbrukas och ammoniak bildas. Samtidigt är reaktionen åt höger exoterm, vilket gör att temperaturen ökar.

Minskning av trycket genom att öka volymen

Detta är motsatsen till föregående fall. När volymen ökar, så minskar gastrycket. Systemet motverkar tryckminskningen genom att reaktionen sker åt vänster så att antalet mol gas ökar. Reaktionen åt vänster är endoterm, vilket ger sänkt temperatur.

Den nya jämvikten som ställer in sig

Även om systemet motverkar den rubbning av systemet som vi orsakade, så kan systemet inte fullt ut kompensera för den påverkan som vi orsakade.

Om vi till exempel pumpar in extra kvävgas, så sker reaktionen åt höger så att kvävgas förbrukas. Men koncentrationen kvävgas, sedan den nya jämvikten ställt in sig, kommer inte att återgå helt till den koncentration som rådde vid den ursprungliga jämvikten, utan det blir kvar en rest av den påverkan som vi skapade. Därför är koncentrationen av kvävgas aningen högre i den nya jämvikten.

Detta kompenseras av att koncentrationen av vätgas är något lägre i den nya jämvikten än i den ursprungliga. På motsvarande sätt blir koncentrationen av ammoniak något högre i den nya jämvikten, än i den ursprungliga.

Inverkan av trycket

Det som styr jämvikten, vad gäller de ingående ämnena, är ämnenas koncentrationer. Jämviktens läge har att göra med reaktionshastigheten åt höger i jämförelse med reaktionshastigheten åt vänster. Eftersom kemisk reaktion sker i samband med att partiklar kolliderar, så är hastigheten koncentrationsberoende. Högre koncentration, ger högre hastighet.

Det är bara gaser som påverkas av trycket. Det beror på att gaser komprimeras av ett högre tryck, men vätskor och fasta ämnen är nästan inte alls komprimerbara. Därför är effekten av tryck på jämvikten bara något som man behöver ta hänsyn till när man har gaser i systemet.

Exempelvis påverkas inte jämvikten mellan fast och löst natriumklorid av trycket.

NaCl(s) ⇄ Na+(aq) + Cl(aq)

NaCl(s) är ett fast ämne vars volym inte ändras märkbart vid ändrat tryck. Natriumjonerna och kloridjonerna i vattenlösning påverkas inte heller eftersom vattenvolymen inte påverkas av trycket, i varje fall inte så länge som vattnet är i vätskeform.

Fysikaliska reaktioner

Le Chateliers princip är utformad för kemiska jämvikter. Principen fungerar dock i princip även för fysikaliska förändringar, till exempel övergångar mellan olika aggregationsformer.

För fysikaliska förändringar blir dock bilden rätt komplicerad när man behöver ta hänsyn till att mekaniskt arbete utförs, till exempel när gaser expanderar. Även temperaturförändringar vid adiabatisk expansion eller kompression inverkar. Då är vi inne på termodynamik, vilket vi inte tar upp närmare just nu.

Stärkelse

Fotosyntesen bygger upp en energireserv av stärkelse

Stärkelse bildas i alla växter genom fotosyntesen. Med hjälp av solljusets energi omvandlar det gröna klorofyllet i cellen koldioxid från luften och vatten från rotsystemet till den enkla sockerarten (monosackariden) glukos, som också kallas druvsocker. Den utgör byggstenarna till stärkelsen. Som en biprodukt bildas även syre.

Solenergi + 12 H2O + 6 CO2 → C6H12O6 + 6 O2

Om växten har gott om druvsocker kan det omvandlas till stärkelse. Stärkelse är lättare att spara och fungerar som växtens energilager.

Stärkelsens uppbyggnad och förekomst

Stärkelse och glykogen är exempel på polysackarider (poly = många). De är uppbyggda av ett stort antal monosackarider. När stärkelse ska bildas så sammanlänkas glukosmolekylerna till jättestora komplex. Stärkelse är näst cellulosa den vanligaste organiska substansen på vår jord. Stärkelse förekommer i växterna främst i frön, rötter och rotknölar och utgör en näringsreserv för den spirande plantan.

Det finns två former av stärkelse, amylos och amylopektin. Dessa stärkelsemolekyler bildar i huvudsak kristallina strukturer. Amylosen består av en enda kedja med 100 - 10 000 glukosenheter. I amylopektinet är glukoskedjan starkt förgrenad och molekylen består av cirka 100 000 glukosenheter. Dessa anses vara de största naturligt förekommande molekylerna.

I växten förekommer stärkelsen i så kallade granuler, vilka har varierande storlek och utseende beroende på växslag. Dessa granuler är mycket små, endast några 1000-dels mm. Molekylstorleken i amylos och amylopektin varierar i olika växtslag, vilket förklarar de olika egenskaperna hos stärkelseenheterna.

Svällningsegenskaper

I stärkelsegranulen (stärkelsekornet) finns vatten bundet till ungefär 1/3 av stärkelsens vikt. På grund av den kristallina strukturen i granulen är stärkelsen olöslig i kallt vatten. Vid värmebehandling förklistras stärkelsen, det vill säga den sväller under upptagande av vatten. Granulerna läcker samtidigt ut amylos, medan amylopektinet förblir olöst i granulerna. Vid den fortsatta upphettningen börjar även amylopektin frigöras från granulerna.

Svällningen av granulerna leder till viskositetsökning och genomskinligheten minskar. Man säger att stärkelsen gelatineras - bildar en gel. Viskositeten når sitt maximum när granulerna är maximalt uppsvällda utan att ha sönderfallit.

Starttemperaturen för gelbildningen i de olika stärkelsesorterna är

Vidare uppvärmning gör att granulerna sönderfaller när stärkelsen går i lösning. Samtidigt minskar viskositeten.

Vid avkylning blir stärkelsegelen fastare, med undantag för potatisstärkelsen, som ger en tunn och klistrig gel. Mekanisk bearbetning, till exempel mycket kraftig vispning, påverkar också viskositeten så att gelen blir tunnare.

Retrogradering

Molekylerna i en stärkelselösning som svalnar har en tendens att kristallisera. Denna effekt är tydligast för amylos som har linjära kedjor som kan lägga sig vid varandra. Stärkelsekristallisationen benämns retogradering. Den retrograderade stärkelsen blir fastare och går till slut att dela med kniv, speciellt om andelen amylos i stärkelsen är hög.

Vid retrograderingen har gelen en tendens att avge överskottsvatten. Det kan vara till fördel t ex när det gäller att få en pudding att stelna, men det kan vara till nackdel om det är önskvärt att så mycket vatten som möjligt ska vara bundet, som i mjukt bröd. Bröds åldrande förklaras delvis av den här effekten.

Matspjälkning

När vi tuggar kokt potatis eller bröd (som ju också värmebehandlats) blandas stärkelsen med saliv. Saliv innehåller ett ämne som påbörjar stärkelsens nedbrytning och maltos bildas. När födan når tolvfingertarmen spjälkas kvarvarande stärkelse av enzym från bukspott. Den bildade maltosen spjälkas slutligen till glukos (druvsocker) av ett enzym från tolvfingertarmens slemhinna. Glukosen upptas av blodet.

Vid tillagning har stärkelse en benägenhet att bilda resistent stärkelse på grund av retrogradering. Denna stärkelse uppstår exempelvis vid kokning och efterföljande avsvalning av ris. Resistent stärkelse bildas även när bröd åldras. Resistent stärkelse bryts inte ner förrän i tjocktarmen vilket gör att den kan räknas som kostfiber.

Modifierad stärkelse

Stärkelse är framför allt en viktig ingrediens i många livsmedel, men används också i tekniska sammanhang, exempelvis som bindemedel i papper. Oftast är stärkelsen modifierad för att förbättra gelatiniseringsegenskaperna, men även löslighet, tålighet mot temperaturförändringar, hållbarheten och andra egenskaper kan förbättras. Modifieringen kan ske med mekanisk bearbetning, men hjälp av enzymer eller på kemisk väg. Ett exempel på modifierad stärkelse är dextrin (E1400), som är en löslig form av stärkelse.

Glykogen kallas ibland djurstärkelse

Våra celler kan också lagra druvsocker. Druvsockermolekylerna kopplas då ihop till så kallad glykogen och utgör vår näringsreserv. Glykogen lagras i våra muskler och i levern där det snabbt kan sönderdelas till druvsocker när vi behöver energi. Trots att glykogen är uppbyggd av glukosmolekyler precis som stärkelse så är det inte stärkelse, men har likheter med framför allt amylopektinet i stärkelsen. En glykogenmolekyl kan innehålla 6 000-30 000 glukosenheter.

Amylos och amylopektin är två former av stärkelse

Stärkelse hör till gruppen kolhydrater och mer än hälften av allt kolhydrat vi människor får i oss kommer från stärkelse. Stärkelse finns i två olika former; amylos och amylopektin.

Amylos är ogrenad stärkelse
Bild: © Svante Åberg

Amylopektin är grenad
Bild: © Svante Åberg

Båda formerna är polymerer av glukos. Skillnaden är att amylos är rak medan amylopektin är grenad. I amylos är glukosenheterna kopplade till varandra med a-1,4-bindningar. Amylopektin har en a-1,6-bindning med jämna mellanrum, vilket medför att den blir grenad. Amylopektin liknar på det viset glykogen, som är en lagringsform av stärkelse. Glykogen är dock ännu mer grenad än amylopektin. I både amylos och amylopektin är syrebryggorna vända åt samma håll. Det gör att stärkelsemolekylen blir spiralvriden.

Mer om stärkelsegelatinisering

Ett välkänt fenomen vid livsmedelstillverkning och matberedning är stärkelsegelatiniseringen. Om vi exempelvis värmer någon viktprocent potatisstärkelse i vatten till ca 60 °C bildas en transparent och förhållandevis fast gel. Vad som verkligen händer vid stärkelsens gelatinisering har klarlagts under senare år, och vi skall här söka ge en molekylär beskrivning av fenomenet.

Stärkelsekornen (granuler) innehåller ett kanalsystem där vatten och andra små molekyler (t ex jod och jodidjoner) lätt kan röra sig. Vid temperaturer under gelatiniseringen sker även en viss svällning i samband med vattenupptagning i kornen (en ökning av diametern med upp mot 30% har rapporterats). Troligen är det de mer amorfa (amorf = strukturlös) skikten i stärkelsekornen som sväller vid denna vattenupptagning. Det som sedan händer, i närvaro av vatten i överskott vid cirka 60 °C, är att amylosmolekyler plötsligt börjar läcka ut från kornen, och samtidigt tränger vatten in i stärkelsekornen. Den kristallina strukturen går då förlorad. Blockeras amylosläckaget kan hela gelatiniseringen avstanna.

En färdigsvälld gel består av kraftigt förstorade stärkelsekorn vilka i sig har en gelstruktur dominerad av amylopektin i vatten. Mellan kornen finns en kontinuerlig vattenfas med lösta amylosmolekyler. Stärkelsegelen är en aggregatgel - aggregaten är de svällda stärkelsekornen - i en kontinuerlig amyloslösning. Gelens reologiska egenskaper (= nästan fast, nästan flytande tillstånd) beror främst på aggregatens konsistensförhållanden och tätpackning samt den kontinuerliga amyloslösningens viskositet.

Fördjupad teori om gelatinisering av stärkelse
Övriga termiska omvandlingar

Vid uppvärmning av stärkelse i vatten förekommer - förutom gelatiniseringen - ytterligare två omvandlingar.

Den första toppen i kurvan är den irreversibla gelatiniseringen, och ytan under toppen är proportionell mot entalpin i omvandlingen. Toppen därefter förekommer endast när vattenmängden är otillräcklig för total gelatinisering, och anses motsvara en form av "smältning" av icke-gelatiniserade stärkelsegranuler. För potatisstärkelse krävs minst fyra vattenmolekyler per glukosenhet för att gelatinisering över huvud taget skall ske, och fullständig gelatinisering kräver 14 molekyler vatten/glukosenhet. Motsvarande siffror för vetestärkelse är 4 resp 20 vattenmolekyler/glukosenhet.

Diagrammet visar hur mycket värme som måste tillföras vid olika temperaturer för att värma en blandning av 1 del vatten + 1 del vätestärkelse. En topp i diagrammet visar att det pågår en energikrävande process vid den aktuella temperaturen.

Gelatiniseringstemperaturen är relativt konstant medan temperaturen för den andra omvandlingen ökar med avtagande vattenhalt (när vattenhalten i vetestärkelse varierar från 35 % till 45 % minskar temperaturen från 107 °C till 88 °C). Under ca 30 % vatten förekommer ingen gelatinisering.

Vid ännu högre temperatur kan den tredje omvandlingen observeras. Denna omvandling är en slags "smältning" av amylos-lipidkomplexet, och omvandlingen är reversibel (omvändbar; som kan återgå till det ursprungliga tillståndet).

Stärkelsegelens åldrande

När en stärkelsegel lagras ändras den relativt snabbt på grund av tendensen till kristallisation. En gel med hög vattenhalt kan därför spricka, och geler med lägre vattenhalt, t ex ett brödinkråm, hårdnar vid lagring på grund av denna kristallisationsprocess. Kristallisationen går snabbast vid kylskåpstemperatur. Man bör därför inte lagra bröd i kylskåpet.

Kristallisationen tycks ske av amylopektin inuti de gelatiniserade granulerna. Processen är reversibel vilket bl a framgår av att bröd som blivit hårt kan "färskas upp" genom uppvärmning till ca 70 °C.

Polära lipiders effekt på stärkelsegelen

Lipider, med endast en kedja och en polär grupp, har drastiska effekter på stärkelsegeler. En krämliknande stärkelsegel med klistrig (lång) konsisten förlorar omedelbart sin klistrighet genom tillsats av en liten mängd monostearin utspädd i vatten. Orsaken till detta fenomen är bildning av amylos-lipidkomplex. Effekten av denna komplexbildning blir att amylosmolekylerna i gelens kontinuerliga medium (kemiska miljö, lösning) fälls ut. Komplexet förlorar nämligen sin vattenlöslighet vid en viss kritisk mängd av lipidmolekyler per amylosmolekyl. Monoglycerider används som funktionell tillsats just för att reducera klistrighet i bl a pastaprodukter och i potatispulver.

En annan effekt uppnås om lipiden tillsätts före gelatiniseringen.

Modifierad stärkelse

Det förekommer även vissa kemiska derivat (derivat = kemiskt förändrad variant) av stärkelse inom livsmedelsindustrin.

Kallsvällande stärkelse är en vanlig stärkelseform i pulverprodukter som skall kunna färdigställas direkt genom blandning med vatten, t ex välling-, sopp- och såspulver. Den utgörs helt enkelt av gelatiniserad stärkelse som torkats. När vatten sedan tillsätts återbildas stärkelsegelen momentant.

Ett flertal olika stärkelsetyper används inom livsmedelsindustrin. Potatisstärkelse ger en transparent gel och den bildar gel även vid mycket låga koncentrationer (ca 0,1 %). Vetestärkelse ger en ogenomskinlig gel, men till skillnad från potatisstär kelse krävs flera procent vetestärkelse för att man skall få en gel.

Om man vill åstadkomma en stabil, klar och tjockflytande lösning som inte sätter sig till en gel bör man använda arrowrotens speciella stärkelse.

Slutligen bör nämnas att huvuddelen av den stärkelse som tillverkas ur potatis och vete har tekniska användningar även utanför livsmedelsindustrin. Limning av papper är den dominerande användningen i vårt land, och etanoltillverkning är ett expanderande användningsområde ("Absolut" vodka bland annat).

Reagens med stärkelse och jod

Stärkelse kan användas som reagens för att påvisa jod. Omvänt kan en jodlösning användas som reagens för att påvisa stärkelse.

Blåfärgning fås med trijodid och pentajodid

En stärkelselösning kan användas som reagens på förekomsten av jod. Det är dock inte jodmolekylen I2 som detekteras. För att en blåfärgning av stärkelsen ska ske så måste det finnas ett komplex av jod med 3 eller 5 atomer, trijodid (I3) eller pentajodid (I5). Trijodid och pentajodid bildas genom sammanslagning av I2 och I. Därför måste det finnas både jod och jodid i lösningen.

Stärkelsekomplexet med jod

Det kraftigt blåsvarta komplexet med stärkelse bildas när I3- eller I5- lägger sig inuti stärkelsespiralen.

Den kraftiga blåfärgningen beror på att jod-stärkelsekomplexet absorberar gult ljus mycket starkt. Det räcker med en mycket liten mängd av komplexet för att man ska se den blå färgen.

Användning av reagenset

Eftersom omvandlingen mellan jod och jodid är en redoxreaktion, så kan jod tillsammans med stärkelselösning användas som indikator på omslagspunkten för redoxtitreringen. Ofta använder man en metod som kallas jodometrisk titrering där natriumtiosulfat används som titrator.

Man kan säga att stärkelse är reagens på jod. Men man kan lika gärna säga att jod är reagens på stärkelse. En tillämpning är att spraya jodlösning på diskat porslin. Om det är dåligt diskat, så får man blåfärgning på porslinet. Det är nämligen så att nästan alla maträtter vi äter innehåller kolhydrater i form av stärkelse.

Trijodidjämvikten

Trijodidjämvikten
 I2 +  I   I3 
jod   jodidjoner   trijodid

Trijodid (och på motsvarande sätt pentajodid) bildas genom sammanslagning av I2 och I. För att jämvikten ska förskjutas mot trijodid krävs närvaro av både jod och jodid. Både om den kemiska miljön är starkt reducerande, så att all jod är i formen I, eller starkt oxiderande, så all jod är i formen I2, så blir halten trijodid mycket låg.

Enbart jodid (I) ger ingen färg

Trijodid och pentajodid bildas genom sammanslagning av I2 och I. För blåfärgning av stärkelsen måste alltså både I2 och I finnas. Om joden enbart förekommer i reducerad form som I krävs att en del av dessa oxideras till I2.

2 I → I2 + 2 e

Exempelvis kan klor användas som oxidationsmedel.

2 I + Cl2 → I2 + 2 Cl

Sedan kan man få trijodid, I2 + I → I3, och pentajodid, 2 I2 + I → I5.

Enbart jod (I2) ger inte heller någon färg

Om bara jodmolekyler finns, men jodidjoner saknas i lösningen, bildas inte trijodid eller pentajodid. Då krävs reduktion av en del av joden till jodid.

I2 + 2 e → 2 I

Exempelvis kan askorbinsyra (C-vitamin) användas som reduktionsmedel och oxideras då själv till dehydrokorbinsyra.

I2 + askorbinsyra → 2 I + dehydroakorbinsyra

Ett recept på jodlösning

Jämviktskonstanten, K = [I3-]/([I2][I3-]), har värdet 7,1.102 M-1.

I ett recept används 0,88 g KI med molmassan 165.99 g, vilket ger 5,30 mmol KI. Vidare används 0,22 g I2 med molmassan 253.8090 g/mol, vilket ger 0,867 mmol I2.

Det är alltså överskott av jodiden, vilket gör att halten I2 i lösningen hålls låg. Ungefär 77 % av joden reagerar till trijodid under förhållandena angivna i receptet (lösningen spädd till 100 ml).

Jodometrisk titrering

Jodometrisk titrering är en kemisk analysmetod för att bestämma mängden oxidationsmedel i ett prov. Som redoxindikator används jod i kombination med stärkelselösning. I oxiderad form fås ett starkt blåsvart komplex tillsammans med stärkelsen. I reducerad form är joden ofärgad.

Titreringen sker med hjälp av reduktionsmedlet tiosulfatjoner, S2O32−. Ändpunkten för titreringen är när lösningen växlar från blåsvart till ofärgad.

Utförande och reaktioner

Man börjar med att tillsätta överskott av en känd mängd jodid till provet. Oxidationsmedlet i provet oxiderar jodiden till jod. Överskottet av jodid blir dock kvar utan att oxideras. Den blandning av jod och jodid som nu finns i provet bildar trijodid enligt jämvikten

I + I2 ⇄ I3 (K = 7,2·102 M-1)

Resultatet blir en blåsvart provlösning när trijodiden bildar komplex med stärkelsen.

Som titrator används en lösning med tiosulfatjoner, S2O32− (t.ex natriumtiosulfat). Tiosulfatet är ett reduktionsmedel som förbrukar I2 och förskjuter trijodidjämvikten åt vänster till dess ingen trijodid återstår vid ändpunkten för titreringen.

Man har följande reaktioner:

I3 + 2 e ⇌ 3 I (Eo = + 0.5355 V)

som tillsammans med reduktionspotentialen för tiosulfat

S4O62− + 2 e ⇌ 2 S2O32− (Eo = + 0.08 V)

ger totalreaktionen

I3 + 2 S2O32− → S4O62− + 3 I (Eo = + 0.4555 V)

Lösningen ändrar färg från blåsvart till ofärgad när man når ekvivalenspunkten.

Redoxreaktion

Redoxreaktioner kan delas upp i delreaktionerna oxidation och reduktion.

Oxidation

Med oxidation menar man reaktioner där elektroner avges. Vid en oxidationsreaktion avges energi i de flesta fallen. Flera metaller kan reagera vid rumstemperatur med luftens syre till oxider. Exempel på detta är järn som oxideras av luftens syre och bildar då rost. Oxidationssteget är
Fe → Fe2+ + 2 e

Reduktion

Motsatsen till oxidation är reduktion. Reduktion innebär att elektroner tas upp. Exempel på en reduktion är när syreatomerna tar upp de elektroner som järnet avger när det rostar. Syreatomerna bildar negativa joner. Man säger då att syret har reducerats

O + 2e → O2–

Reduktion och oxidation sker samtidigt

Elektroner kan inte förkomma fria, de kan bara överföras från ett ämne till ett annat. När en reduktion sker, sker samtidigt en oxidation eftersom lika stort antal elektroner avges och tas upp. Vi kallar detta redoxreaktion. I exemplet med oxidation av järn och reduktion av syre balanseras de två delreaktionerna så att lika måna elektroner tas emot som de som avges och man får totalreaktionen

Fe + O → Fe2+ + O2–

Om vi tar hänsyn till att syrgas förekommer som molekyler och att järnjonerna och syrejonerna bildar föreningen FeO och dessutom anger aggregationsformen, så kan vi snygga till reaktionsformeln för totalreaktionen till

2 Fe(s) + O2(g) → 2 FeO(s)

Redoxreaktion vid kontakt mellan ämnena

Kontakt mellan reaktanterna

I en vanlig redoxreaktion sker elektronövergången i kontakt mellan ämnena som reagerar. Elektronen hoppar över direkt från molekylen (eller atomen) som oxideras till molekylen (eller atomen) som reduceras. Elektronhoppet kan bara ske över mycket korta avstånd och sker därför i samband med att partiklarna kolliderar. Därför sker oxidationen och reduktionen på samma plats.

Elektroner förekommer inte fria i ämnen

Anledningen till att elektronöverföringen sker i direktkontakt mellan ämnena är att elektroner inte kan förekomma fria i ett material eller en lösning. De binder alltid till de atomer eller molekyler som finns i närheten. I icke-metalliska material är elektronens position vanligen fixerad till en bestämd molekyl eller atom.

Däremot är elektronerna fritt rörliga i metalliska material. De kan dock inte lämna metallen, bara röra sig inom metallen. När elektronerna rör sig förbi atomerna i metallgittret handlar det inte om elektronöverföring. I stället har metallen ett enda stort elektronmoln av ledningselektroner som är gemensamma för hela metallkristallen.

Det finns också halvledande material som med viss ledningsförmåga, men där elektronerna i huvudsak är fixerade i vissa positioner.

Litteratur

  1. Main page, Wikipedia
    http://en.wikipedia.org/wiki/Main_Page (2007-09-14)
    • Water
      http://en.wikipedia.org/wiki/Water (2007-09-14)
    • Water (molecule)
      http://en.wikipedia.org/wiki/Water_molecule (2007-09-14)
    • Salt
      http://en.wikipedia.org/wiki/Salt (2007-09-14)
    • Food additive
      http://en.wikipedia.org/wiki/Food_additive (2007-09-14)
    • Sodium Chloride
      http://en.wikipedia.org/wiki/Sodium_Chloride (2007-09-14)
    • Potassium Chloride
      http://en.wikipedia.org/wiki/Potassium_Chloride (2007-09-14)
    • Iodine
      http://en.wikipedia.org/wiki/Iodine (2007-09-14)
    • Potassium iodide
      http://en.wikipedia.org/wiki/Potassium_iodide (2007-09-14)
    • Triiodide
      http://en.wikipedia.org/wiki/Triiodide (2007-09-14)
    • Polyiodide
      http://en.wikipedia.org/wiki/Polyiodide (2007-09-14)
    • Lugol's iodine
      http://en.wikipedia.org/wiki/Lugol%27s_iodine (2007-09-14)
    • Tincture of iodine
      http://en.wikipedia.org/wiki/Tincture_of_iodine (2007-09-14)
    • Starch
      http://en.wikipedia.org/wiki/Starch (2007-09-14)
    • Polysaccharide
      http://en.wikipedia.org/wiki/Polysaccharide (2007-09-14)
    • Chemical test
      http://en.wikipedia.org/wiki/Chemical_test (2007-09-14)
    • Redox
      http://en.wikipedia.org/wiki/Redox (2007-09-14)
    • Titration
      http://en.wikipedia.org/wiki/Titration (2007-09-14)
    • Redox titration
      http://en.wikipedia.org/wiki/Redox_titration (2007-09-14)
    • Iodometry
      http://en.wikipedia.org/wiki/Iodometry (2007-09-14)

Fler experiment


jämvikt
Anden i flaskan
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Avdunstning och temperatur
Bestämning av antalet kristallvatten i kopparsulfat
Brus-raketen
Den frysande bägaren
Den omöjliga tvålen - den är preparerad!
Flaskor mun mot mun
Framställ väldoftande luktämnen
Fryspunktsnedsättning
Färgämnen i M&M
Försvinnande bläck
Gasvolym och temperatur
Gummi och lösningsmedel
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur smakar salmiak?
Innehåller koksaltet jod?
Kemi i en brustablett
Kemi i en plastpåse
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Luftfuktighet och rostbildning
Löslighet och pH - En extraktion
Maskrosen som krullar sig
Molnet i flaskan
När flyter potatisen?
Osmos i potatis
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Principen för dynamisk jämvikt
Reaktionshastighet med permanganat
Saltat islyft
Superabsorbenter i blöjor
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför äter vi Samarin?
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

kemiska reaktioner
Elda stålull
Enzymaktivitet i ananas
Enzymkinetik för katalas
Framkalla fotopapper
Kallrörd vaniljkräm och saliv
Kemi i en plastpåse
Kemisk klocka med jod
När fungerar enzymet bäst?
pH-beroende avfärgning av rödkål
Reaktionshastighet med permanganat
Självantändning med glycerol och permanganat

livsmedel
Bjud din jäst på mat
Blev disken ren?
Blå himmel och röd solnedgång
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Diska med äggula
Doft och stereoisomeri
Enzymaktivitet i ananas
Enzymkinetik för katalas
Flyter isen i matoljan?
Framställ låglaktosmjölk
Fruktköttet får solbränna
Fruktmörade proteiner
Gelégodis i vatten
Göra lim av kasein
Hur gör man kakan porös?
Hur moget är äpplet?
Hur mycket vatten finns i maten?
Höna med gummiben?
Innehåller koksaltet jod?
Kallrörd vaniljkräm och saliv
Kan man tapetsera med abborrar?
Koka Cola
Koka knäck
Maizena gör motstånd
Majonnäs - en emulsion
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Modellmassa av mjölk
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Pektin och marmeladkokning
Popcorn
Regnbågens färger med Rödkåls-indikator
Skär sig majonnäsen?
Släcka fett på rätt sätt
Stärkelse och vatten - fast eller flytande?
Syror och baser i konsumentprodukter
Testa C-vitamin i maten
Utvinna järn ur järnberikade flingor
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför svider det i ögonen när man skalar lök?
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Äta frusen potatis