Håller bubblan?

Tillhör kategori: fysikalisk kemi, kemisk bindning, vardagens kemi

Författare: Susanne Renhult

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Håller bubblan?

Tid för förberedelse: 10 minuter

Tid för genomförande: 10 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Busenkelt

Introduktion

Har du någon gång märkt att såpbubblor håller olika länge beroende på vad de landar på? Här kommer ett experiment som visar hur såpbubblor reagerar när de kommer i kontakt med bomull respektive ylle.

Riktlinjer

Arbetet kan genomföras som demonstration eller som elevförsök.

Säkerhet

Experimentet är ofarligt.

Överbliven såplösning kan spolas ned i avloppet.

Materiel

Förarbete

Inget förarbete om du väljer att använda en färdig såpbubblelösning. Väljer du att göra din egen lösning så måste du ställa fram diskmedel, eventuellt avjonat/destillerat vatten samt glycerin.

Följande recept på såpbubblelösning finns på www.bubbles.org.

Utförande

Om du vill blanda din egen såpbubblelösning så gör du det innan du gör resterande del av laborationen. Mät i så fall upp proportionerna i bägaren och blanda försiktigt.

  1. Placera ut de tygbitar i bomull och ylle som du ska använda på bordet framför dig.
  2. Forma en piprensare till en ganska liten ögla (~2cm i diameter) som du kan blåsa bubblorna med.
  3. Doppa öglan i såpbubblelösningen och blås försiktigt bubblorna över tygbitarna.
  4. Studera bubblorna och hur de beter sig när de kommer i kontakt med de olika tygen.
Med en piprensare formad till en ögla är det lätt att blåsa såpbubblor.
Bild: © Susanne Renhult

Förklaring

Såpbubblorna går sönder direkt när de kommer i kontakt med bomullstyget men håller en stund när de kommer i kontakt med ylletyget. Anledningen till detta är att såphinnan är en polär vattenlösning. När hinnan kommer i kontakt med bomullen så binder vattnet till bomullens hydrofila grupper. Såphinnan förlorar då så mycket vatten att den spricker. Yllet däremot är hydrofobt på grund av fettet lanolin och vill därför inte binda till varken tensiderna eller vattnet i såpbubblorna.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Såpbubblor

En såpbubbla består av en mycket tunn vattenhinna som har stängts in mellan, i detta fall, två hinnor av diskmedel. Diskmedel används för att det innehåller ämnen, tensider, som gör att ytspänningen på vattnet minskas med ca. två tredjedelar. Om inte diskmedlet användes så skulle ytspänningen vara så hög att bubblan inte skulle kunna bildas, eller gå sönder mer eller mindre direkt. Att inte såpbubblan går sönder när det sträcks ut beror på att tensidmolekylerna i vattenlösningen fyller på det lagaer av tensidmolekyler som ligger på ytan och håller ytspänningen låg. Till viss del minskar tensiden även avdunstningen av vatten vilket ökar bubblans livslängd.

Tensidmolekyler

En tensid är ett ämne som består av två delar; ett hydrofilt huvud och en hydrofob svans. Hydrofil betyder vattenälskande och denna del av tensidmolekylen drar sig in mot vattnet i bubblan. Tensiden säker ytpänningen, vilket gör det möjligt för såpbubblan att hålla ihop.

Tensidmolekylerna lägger sig först på såphinnans utsida och insida. Överskottet av tensid löser sig i vattnet i form av miceller. Micellernas form beror på att tensiden försöker gömma sina hydrofoba svansar för vattnet.
Bild: © Svante Åberg
Natrium dodecyl sulfat
Bild: © Wikipedia

Exempel på tensidmolekyler är natrium dodecyl sulfat, även kallad natrium lauryl sulfat (C12H25NaO4S). Molekylen har en lång kolvätekedja på vilken sitter en sulfatgrupp, som är minusladdad. Den är alltså en anjonisk tensid. Sulfatgruppen är en mycket svag bas, korresponderande mot den starka syran svavelsyra. Genom att den är så svag bas protoneras den inte, även om vattenlösningen är mycket sur.


Natrium laureth sulfat
Bild: © Wikipedia

Natrium laureth sulfat är ett annat exempel,
CH3(CH2)10CH2(OCH2CH2)nOSO3Na.
Den liknar natrium dodecyl sulfat, men har dessutom syreatomer i kolkedjan, vilken gör den till en eter.


Miceller

Inuti den tunna vattenhinnan bildas även något som kallas miceller. Miceller bildas då koncentrationen av tensiden blir så stor att ytspänningen nästan inte minskar mera när trots att man tillsätter mer av tensiden. Detta kallas för kritisk micellskoncentration, CMC (Critical Micelle Concentration).

Tensiderna lägger sig först på ytorna av såphinnans utsida och insida. Men det krävs en ytterst liten mängd att täcka ytorna eftersom tensiderna lägger sig i ett enkelt lager (monolager), lika tjockt som tensidmolekylens längd. När vattenytan är täckt av tensidmolekyler har koncentrationen nått CMC. Ytterligare tillsats at tensider bildar miceller inuti vattenlösningen.

Tensiderna i en micell vänder sin hydrofoba svans inåt och sitt hydrofila huvud utåt mot vattnet. Dessa miceller kan göra att såpbubblan håller längre i och med att de kan "fylla på" ytlagret (både in- och utvändigt i bubblan) med mer av tensiden när såpbubblan blåses upp till större diameter.

Tvätteffekt hos tensider

Miceller har även den effekten i rengöringsmedel att de kan isolera fett från vattnet och på så sätt göra rent. Tensidmolekylernas fettlösliga svansar löser sig i fettdroppen, medan de vattenlösliga huvudena pekar ut mot vattnet. Det gör att fettdroppen omges av ett vattenlösligt skal som får hela droppen att trivas bra i vattenmiljö och därför kan frigöra sig från underlaget. Överskottet av diskmedelsmolekyler i vattenlösningen slår sig gärna samman i miceller och gömmer sina fettlösliga svansar inåt i en bolliknande struktur.

För att dessa miceller med fett inte ska fastna på det rena igen tillsätts något som kallas skyddskolloider till framförallt tvättmedel. Oftast består dessa skyddskolloider av karboxymetylcellulosa (CMC) och ibland även av polyvinylpyrrolidon.

Tensidmolekyler hjälper till att lösa fettdroppar när man tvättar.
Bild: © Svante Åberg

Ytspänning

Bild: © Wikipedia

Ytspänning är en kraft som finns mellan två faser, t.ex. luft och vatten. Dessa krafter finns även inuti vätskan men där är de jämnt fördelade och drar lika mycket åt alla håll. Ytspänningen gör att det bildas droppar eftersom det inte finns några krafter som drar utåt utan bara inåt mitten. Detta fenomen märks inte bara på vattendroppar utan även då man fyller ett glas till brädden och då kan få vattnet att faktiskt gå lite över glaskanten.

Bild: © Wikipedia

Fenomenet ytspänning har många viktiga funktioner i naturen så som kapillärkraft och att det möjliggör för små djur så som skräddare att gå på vattnet. Kapillärkraft är den kraft som uppstår mellan en yta i en smal behållare, t.ex. ett rör, och en vätska. Denna kraft är större än den ytspänning som finns mellan vattnet och luften vilket gör att vattnet kommer att klättra uppåt på rörets kanter. Det är denna kapillärkraft som tillsammans med avdunstningen från bladen transporterar vatten från rötterna till toppen på växterna.


Textilierna

Lagren i ett hårstrå.
Bild: © Wikipedia

Ylle

Råull innehåller 40 - 50% av ett fett som heter lanolin, detta tillsammans med ullfiberns tunna keratiniserade proteinhinna gör att ullen blir hydrofob på ytan. Ullen häller tätt mot väta och kyla väldigt bra, det beror på fettet samt även på formen av ullfibern. Ullfibern är krusig vilket gör att de hakar i varandra och inte släpper igenom luft och väta. Ytterst på ullfibern finns ett mycket tunt membran som kemiskt är mer beständig än fibern i övrigt och kraftigt vattenavstötande. Att det är vattenavstötande beror på att ull innehåller aminosyror som har en hydrofob (opolär) sidokedja. I och med att ullen har en hydrofob yta absorberas inte såpbubblan av tyget utan lägger sig på ytan, precis som på den nyligen vaxade bilen.


Bomull

Cellulosa som en polymer av β-D-glukos
Originalbild: © Wikipedia

Bomullen kommer från bomullsplantan där det växer runt fröet. För att kunna använda bomullen att göra tråd processas råbomullen och kvar blir i princip bara ren cellulosa, en polymer av glukosmolekyler. Dessa glukosmolekyler har OH-grupper som gör att cellulosan och då även bomullen blir hydrofil.

För att återkoppla till experimentet så är det dessa hydrofila cellulosamolekyler som gör att vattnet kan absorberas av bomullstyget. Det beror på att bomull i princip är ren cellulosa och då inte innehåller något fett som kan "skydda" bomullen från såpbubblan.

Fördjupning

Ordnade strukturer hos amfifiler

Amfifiler

hydrofil = vattenälskande
hydrofob =vattenskyende

En amfifil är en molekyl med en hydrofil och en hydrofob del. SDS (natrium dodecyl sulfat) är ett exempel på en amfifil. Sulfonatgruppen med natriumjonen (till höger) är vattenälskande medan den långa kolvätekedjan är vattenskyende. SDS är mycket vanlig i diskmedel.


Natrium ddodecyl sulfat (natrium lauryl sulfat).

Andra namn för amfifiler är tensider och detergenter. Tensid syftar på förmågan att sänka ytspänningen, detergent syftar på förmågan att lösa smuts.

Amfilen orienterar sig med hjälp av sin vattenälskande och vattenskyende del


Hinnan på en såpbubbla stabiliseras av monolager av amfifiler. Överskottet av amfifiler bildar miceller i lösningens inre.
Bild: Svante Åberg

Det polära "huvudet" på amfifilen binder till vatten. Därför lägger sig amfifilen så att huvudet är i kontakt med vatten, men den opolära svansen undviker kontakten med vatten. Det finns olika sätt att åstadkomma detta.

Ett sätt är att lägga sig på vattenytan med svansarna pekande upp mot luften. Då får man ett monolager av amfifilen på vattenytan. Även en liten mängd amfifil räcker för att täcka en stor vattenyta. Amfifilen som lägger sig på vattenytan bryter bindningarna mellan vattenmolekylerna som ligger i vattenytan. Det har effekten av ytspänningen sänks.

När hela vattenytan är täckt, så måste överskottet av amfifilen lösa sig i det inre av lösningen. För att undvika kontakten med vatten bildar amfifilen miceller. En micell är en anhopning av amfifila molekyler som gömmer sina vattenskyende svansar i micellens inre och vänder de vattenälskande huvudena utåt mot den omgivande vattenlösningen.

När du blåser såpbubblor, till exempel med en tvållösning, så bildas en tunn hinna av tvållösningen. Den ytspänningssänkande effekten gör hinnan stabilare. På ytan av hinnan bildas monolager, både på utsidan och insidan. Du kan vara säker på att tvållösningen är övermättad så det även finns miceller i lösningen.

Även om hinnan är väldigt tunn, så är den tillräckligt tjock för att det ska finnas lösning mellan dess ytor. Tvållösningen tenderar att sjunka mot såpbubblans nedre del på grund av tyngdkraften. Då minskar hinnans tjocklek. När den blir så tunn att de två monolagren kommer i kontakt med varandra, så brukar bubblan spricka.

Energiminimering hos amfilier i lösning

Alla system strävar mot sin lägsta energi där de är stabilast. Det åstadkoms genom att bindningar skapas mellan molekylerna. Ju starkare bindning, desto högre bindningsenergi. Att en stark bindning ger lägre energi hos systemet kan man förstå när man tänker på det krävs energi för att bryta en bindning, dvs. man måste tillföra den energi som bryter bindningen.

Det polära "huvudet" på amfifilen bidrar till att göra den vattenlöslig. Genom att binda till vatten minskar amfifilen sin energi i lösningen. Alla system strävar mot sin lägsta energi där de är stabilast. I en vattenlösning orienterar sig därför amfifilen med det polära huvudet mot vattnet.

Däremot är den opolära svansen vattenskyende. Det är inte så att svansen stöter bort vatten, men i konkurrensen om att skapa bindningar så vattenmolekylerna binder vattenmolekylerna varandra i stället för att binda till de opolära svansarna. Bindningsenergin mellan två vattenmolekyler är nämligen mycket större än mellan en vattenmolekyl och en opolär svans på amfifilen. Att vatten binder andra vattenmolekyler är en följd av systemets tendens att minimera sin energi.

Bildning av ett monolager på vattenytan


Hinnan på en såpbubbla stabiliseras av ett monolager av amfifiler. Överskottet av amfifiler bilda miceller i såplösningens inre.
Bild: Svante Åberg

En amfifil som sätts på en vattenyta sprider sig snabbt över hela ytan. Det är en mycket snabb process som tar bråkdelen av en sekund. Att processen är spontan och snabb visar att drivkraften bakom spridningen är stark.

Ett mått på denna drivkraft är ändringen av Gibbs fria energi ΔG. Bakom ΔG ligger dels strävan efter lägsta möjliga energi hos systemet, dels att entropin ska maximeras.

Systemets energi minskar på grund av bindningarna mellan det polära ”huvudet” på amfifilen och vattenmolekylerna. Samtidigt pekar den opolära svansen pekar upp i luften, bort från vattnet. Bindningsenergin mellan det polära huvudet och vattenmolekylerna är ganska stark. Att det handlar om en sänkning av systemets energi kan man förstå när man tänker på att man måste tillföra arbete för att slita loss amfifilen från bindningarna med vattenmolekylerna.

Spridningen av amfifilen över vattenytan ökar systemets entropi. Entropi är ett mått på ”oordning”. Ordning är när amfifilen och vattnet är på var sin plats, oordning när de ”blandas”. Även spridningen av amfifilerna över en större yta innebär en typ av blandning eftersom de amfifila molekylerna inte lägre är sammanpackande på en plats.

Den spontana reaktionen innebär att Gibbs fria energi minskar, dvs. ΔG < 0. Även sänkningen av ytspänningen som sker när amfifilen tillsätts är ett mått på att systemets energi minskar.

Languir-Blodgett teknik


Ett kommersiellt tråg för Lagmuir-Blodgett teknik att ta mätvärden på ytspänningen som en funktion av arean.
"Langmuir-Blodgett Trough" av Jyrkorpela" (CC BY-SA 4.0)

En amfifil som sätts på vattenytan sprids över hela den tillgängliga arean. Om man bara har tillsatt en liten mängd, så blir det glest mellan molekylerna. Det är faktiskt möjligt att maka ihop molekylerna så att de trängs samman på en mindre yta. Då ökar ytkoncentrationen av amfifilen.

Langmuir-Blodgett tekniken tillämpar denna princip att kunna variera ytkoncentrationen av amfifiler. Man använder ett tråg som är fyllt med vatten till brädden, och ytterligare lite till. En ribba som ligger på tråget kan förflyttas så att ytan minskar. Bilden till höger visar på ett kommersiellt Langmuir-Blodgett tråg.

Samtidigt som lagret av amfifiler pressas samman, så ökar utspänningen. Det beror på att entropin ökar när molekylerna packas samman. När lagret packats så att täckningen blir precis 100 %, så ökar ytspänningen plötsligt snabbare. I Langmuir-Blodgett tekniken så mäter man ytspänningen som en funktion av arean hos monolagret. Knixen på grafen man får visar när man fått exakt ett monolager med täckningen 100 %.

Om man vet hur många mol amfifil man har satt på vattenytan och hur stor arean är när man fått ett perfekt monolager, så är det enkelt att räkna ut hur stor en molekyl av amfifilen faktiskt är. Det man får fram är tvärsnittsarean hos amfifilen där den står packad på ände med huvudet nedåt och svansen uppåt.

Många anfifiler är i fast form vid rumstemperatur. Ett typexempel är stearinsyra. För att kunna sprida den på vattenytan löser man först upp en känd mäng i eter. Sedan sprider man lösningen på vattentytan. Lösningen sprids blixtsnabbt över hela ytan. Sedan avdunstar etern. Kvar blir amfifilen. Sedan kan man göra sina mätningar på vanligt sätt.

Olika strukturer med amfifiler


Tvålmolekyler bildar monolager, miceller och packar in fettpartiklarna så att de blir vattenlösliga.
Bild: Svante Åberg

När du tvättar dig med två finns ett monolager av tvål på vattenytan, miceller i själva tvållösningen, men dessutom fettpartiklar inbäddade i amfilen så att de får ett vattenlösligt ytlager. Tvålmolekylernas opolära svansar är fettlösliga och löser sig i fettet. Det polära huvudet pekar i stället ut mot vattenlösningen. Eftersom ytan på på den inbäddade fettpartikeln är vattenlöslig, så blir hela fettpartikeln vattenlöslig. Det gör fettet lätt att skölja bort.

Amfiflier kan också bilda bilager, dvs. dubbla lager där de vänder sina polära huvuden utåt mot vattenlösningen och sina opolära svansar inåt mot mitten av bilagret. Denna konstruktion är helt avgörande för livet på jorden. Det är den konstruktionen som skapar cellväggarna i kroppens celler. Fosfolipider är de vanligaste byggstenarna i cellmembranen.


Biologiska cellmembran är uppbyggda av amfifiler i dubbla lager, så kallade bilager.
Bild: Svante Åberg

Det normala är att det först bildas monolager på vattenytan. När den är helt täckt av amfifiler och det inte finns mera plats, så börjar det bildas miceller i vattenlösningen. Den koncentration av amfifiler som precis är på gränsen att miceller ska bildas kallas kritisk micellkoncentration (Critical Micelle Concentration, CMC). Om koncentrationen av amfilfil ökas på ytterligare kommer man till slut till en punkt då det inte ryms fler miceller i lösningen. Då börjar det bildas ännu mer komplexa strukturer med amfifiler i form av tredimensionella nätverk. Dessa kan få många varierande former.

Ytspänning

Vattnets ytspänning är hög

Vatten är exempel på ett ämne med hög ytspänning. Det beror på att attraktionskrafterna mellan vattenmolekylerna är ovanligt stora. Vätebindningen mellan syret i en molekyl och väteatomen i en annan närliggande molekyl är nämligen stark.


Ytspänningen är en följd av att attraktionskrafterna i gränsskiktet är riktade inåt.
"Wasser in Tropfen und an der Phasengrenze" av Booyabazooka" (CC BY)

Ytspänningen visar sig i gränsskiktet

Attraktionskrafterna mellan molekylerna får vätskan att hålla samman. Inne i vätskan verkar attraktionskrafterna åt alla håll eftersom varje molekyl är omgiven på alla sidor av andra molekyler som den attraherar.

I gränsskiktet mellan vattnet och luften är bindningarna mycket svagare, så svaga att de oftast är försumbara. Luftens molekyler kan nämligen inte bilda de starka vätebindningarna. Dessutom är avståndet mellan luftmolekylerna stort, vilket innebär att vattnet inte kan binda till så många luftmolekyler. Bindningarna är dessutom mycket kortvariga. De existerar bara i ett mycket kort ögonblick då luftmolekylen kolliderar med vattenytan.

Det är skillnaden i energi mellan vattenmolekylerna i vätskeytan (högre energi) och molekylerna i vätskans inre (lägre energi) som är själva ytspänningen. Ytspänningen är alltså ett mått på den energi som krävs för att skapa fasgränsen mellan vätskan och gasen.


Ytspänning i en droppe.
Bild: Svante Åberg, Sofie Wallin

Ytspänning i en droppe

De röda pilarna visar krafterna som håller samman vattenmolekylerna i en droppe. Nettokraften (summan av krafterna) visas med blå pil.

I droppens inre verkar krafterna åt alla håll ungefär lika mycket. Krafterna tar därför ut varandra så att nettokraften blir nästan noll.

I vattenytan finns bara krafter som verkar i ytan och mot droppens inre. Nettokraften pekar därför mot droppens inre. Det verkar som om vattnet har en tunn hinna, ytspänning. Ytspänningen gör att droppen får en rund form.



Ytspänning i en plan vätskeyta.
Bild: Svante Åberg, Sofie Wallin

Ytspänning i en plan vätskeyta

Om vattenmängden är större flyter vattnet ut till en plan yta. Det beror på att vattnets tyngdkraft är större än ytspänningens sammanhållande krafter. Ytspänningen finns dock kvar som en tunn hinna på vattenytan. Det är den som gör att skräddare (insekter) kan springa på vattenytan utan att sjunka.

Energinivån är högre hos molekylerna i vätskeytan

Bindningsenergier sänker molekylernas energinivå. Det kan man förstå när man tänker på att det krävs arbete för att slita loss en molekyl från de andra molekylerna i vätskan. Eftersom molekylerna i vätskeytan binder färre grannmolekyler, så sänks deras energi inte lika mycket som molekylerna längre in. Molekylerna i ytan ligger på en högre energinivå. Det är denna energiskillnad som är ytspänningen. Ytspänning mäts i enheten energi per ytenhet (J/m2).

Men energi kan också mätas som det arbete som krävs att skapa vätskeytan. Till exempel krävs det arbete att blåsa upp en såpbubbla, även om det är lite. Om man tar bort munnen från blåsröret innan bubblan har lossnat, så drar såpbubblan ihop sig igen. Det finns alltså en spänning i vätskeytan. Ytspänningen kan därför också anges som kraft per sträcka (N/m), ungefär som den kraft som krävs att sträcka ett gummiband.

Kontaktvinkel

Ytspänning uppstår i fasgränser

Ytspänning är en kraft som finns mellan två faser, t.ex. luft och vatten. Dessa krafter finns även inuti vätskan men där är de jämnt fördelade och drar lika mycket åt alla håll. Ytspänningen gör att det bildas droppar eftersom det inte finns några krafter som drar utåt utan bara inåt mitten. Detta fenomen märks inte bara på vattendroppar utan även då man fyller ett glas till brädden och då kan få vattnet att faktiskt gå lite över glaskanten.


Vätningen av underlaget beror på ytspänningen.
"Droplets of fluid on a surface" av MesserWoland" (CC BY-SA 3.0)

Ytspänningen hos underlaget avgör om dropparna flyter ut

Vilken tjocklek som vattendroppen får på underlaget beror på underlagets ytspänning. Opolära material med låg ytspänning ger tjocka droppar medan polära material med hög ytspänning ger tunna droppar.


Låg ytspänning hos den underlaget gör att dropparna inte flyter ut.
"Water beading on a surface" av Wars" (CC BY-SA 3.0)

Om en yta har låg ytspänning, så som en nyligen vaxad bil, så kommer vattendroppar som landar på bilen att inte väta ytan. Vattendropparnas inre sammanhållande krafter är större än attraktionen mellan vattnet och underlaget av vax. Dropparna hålls därför samman i droppar, vilket ger minsta möjliga yta i förhållande till volymen.

Om en yta har hög ytspänning, så som papper, så kommer attraktionen mellan papperet och vattnet att vara jämförbar med vattnets inre sammanhållande krafter. Det gör att vattnet flyter ut och väter underlaget.



Kontaktvinkeln är sådan att de krafter som orsakas av ytspänningarna balanseras.
"Contact angle and interphase-energy" av Joris Gillis~commonswiki" (CC BY)

Kontaktvinkeln är ett mått på ytspänningen

Kontaktvinkeln bestäms av de energier som är inblandade när materialet (S = solid), vätskan (L = liquid) och luften (G = gas) kommer i kontakt med varandra. De tre krafter som dessa energier (material-vätska, vätska-luft, luft-material) ger upphov till kan representeras av tre vektorer som precis balanserar varandra i riktningen utmed materialets yta: 0 = ΧSL - ΧSG - ΧLG cos(Θ).

Wilhelmyplatta


Wilhemyplatta
"Wilhelmy plate" av Vincent Émyde (CC BY)

Wilhelmyplattan används för att mäta ytspänningar. Principen bygger på att när plattan kommer i kontakt med vätskeytan, så väts plattan av vatten som stiger en bit uppför plattan. Vattnet stiger på grund av attraktionskrafterna mellan materialet i plattan och molekylerna i vätskan.

Plattan är upphängd i en känslig våg. Beroende på hur högt vattnet väter plattans sidor blir blir tyngden olika. Ju högre ytspänningen är, desto högre stiger vattnet och desto större kraft kan avläsas på vågen. Eftersom man väger tyngdökningen, så kallas konstruktionen för en ytspänningsvåg.

Wilhelmyplattor tillverkas av material som väts effektivt och ger liten kontaktvinkel θ. Materialet i plattan är vanligen platina i kommersiella instrument, men det går också bra med papper med goda vätegenskaper.

Vätskor med hög ytspänning stiger högt på plattan och tynger därför ned plattan mera. Vatten är ett exempel på ett ämne med särskilt hög ytspänning. Vattnets ytspänning kan sänkas effektivt med hjälp av några droppar diskmedel. Diskmedelsmolekylerna lägger sig på vattenytan och bryter attraktionskrafterna som råder mellan vattenmolekylerna. Resultatet blir att vattnet inte väter plattan lika bra och inte stiger lika högt.

Krafterna som verkar på ytspänningsvågen

Ytspänningsmätningar enligt principen för Wilhelmyplattan bygger på att vätningen av plattan (räknat i tyngdkraft) är linjärt beroende av ytspänningen.

Den nedåtriktade kraften på en platta som sänks ned i en vätska kommer dels från plattans tyngd, ρplattagLBT, dels från tyngden av den vätska som kryper uppför ytan på plattan, 2γ(T+B)cos(θ). Från detta ska dras lyftkraften från den undanträngda vätskan, ρvätskagHBT.


Wilhelmyplatta för mätning av ytspänning
Svante Åberg
Variablernas betydelse är följande:
γ = ytspänning
ρ = densitet
g = tyngdaccelerationen = 9.81 N/kg
L = plattans längd
B = plattans bredd
T = plattans tjocklek
H = djupet som plattan sänkts ned
θ = kontaktvinkel mellan vätskan och plattan
Δ betecknar en differens

Krafterna som verkar på Wilhelmyplattan balanserar varandra.
Svante Åberg

Kontaktvinkeln

Kontaktvinkeln θ mellan vätskan och plattan närmar sig 0 när vätskan väter plattan idealt. Wilhelmyplattor tillverkas av material som ger mycket liten kontaktvinkel. När ytspänningen sjunker så ökar kontaktvinkeln.

Egentligen bestäms kontaktvinklarna av de energier som är inblandade när plattan, vätskan och luften kommer i kontakt med varandra. De tre krafter som dessa energier (platta-vätska, vätska-luft, luft-platta) ger upphov till kan representeras av tre vektorer som precis balanserar varandra.

Krafterna som verkar på Wilhelmyplattan balanserar varandra. När kontaktvinkeln ökar på grund av minskande ytspänning, så minskar den komponent av kraftvektorn som drar nedåt. Tyngden som verkar på vågen blir då mindre.

Polaritet

I kemiska föreningar delas elektroner mellan atomerna som ingår i föreningen. Olika grundämnen har olika förmåga att attrahera elektronerna. Denna egenskap kallas elektronegativitet. Generellt sett har metaller låg elektronegativitet och ickemetaller hög elektronegativitet. Tittar man på ickemetallerna så är elektronegativiteten högst hos kväve (N), syre (O) och fluor (F). Lägst elektronegativitet, dvs. de mest elektropositiva grundämnena, finns i grupp 1 nedtill i periodiska systemet.

Polaritet hos molekylföreningar

Elektronegativitet förskjuter elektronmolnet i molekylen

Molekylföreningar är ämnen där ickemetaller har bundits till varandra. Bindningarna är kovalenta bindningar, så kallade elektronparbindningar. Elektronparen bildar elektronmoln som binder samman de två atomerna i bindningen. På grund av olika elektronegativitet hos de olika atomslagen, så förskjuts elektronmolnet mot det mer elektronegativa atomslaget. Om till exempel syre och väte bind till varandra, så är elektronmolnet förskjutet mot syre på grund av dess höga elektronegativitet.

I vätefluorid (HF) är fluor den mer elektronegativa atomen till höger.
CC Benjah-bmm27

Elektronerna är bara förskjutna i bindningen, men flyttar inte över helt och hållet. Men förskjutningen av elektronmolnet gör att en del av molekylen kan vara mer negativ. Eftersom den totala laddningen för en molekyl är noll, så finns motsvarande positiva laddning på den atom som har lägre elektronegativitet. Man säger att bindningen är polär.

Molekylen blir en dipol

Den polära bindningen kan göra att molekylen som helhet blir polär. En sådan molekyl kallas för dipol. Exempelvis är vätefluorid en dipol där fluoret har ett negativt laddningsöverskott (rött) och vätet ett positivt (blått).

Vatten är ett starkt polärt ämne på grund av syrets höga elektronegativitet.
CC

Ett annat exempel är vattenmolekylen där syret har ett negativt laddningsöverskott och vätena ett positivt. Här är det två bindningar till syret, en till vardera väteatomen. Den negativa laddningen på syret är därför summan av de positiva laddningarna på vätena. På grund av att den är vinklad är vattenmolekylen en dipol med den negativa änden vid syret och den positiva mitt emellan väteatomerna.


I koldioxid (CO2, O=C=O)är båda bindningarna mellan kolet i mitten och syret i änden polära, men motsatt riktade. Molekylen som helhet blir därför opolär.
CC
Symmetri kan släcka ut polariteten hos bindningarna

Koldioxid innehåller bindningar mellan kol och syre. Syreatomerna i var sin ända är mer elektronegativa än kolatomen i mitten. Bindningarna är alltså polära.

Koldioxid är en rak molekyl, till skillnad från vattenmolekylen. Dessutom är den polära bindningen mellan kol och syre i den ena änden motriktad motsvarande bindning i den andra änden. De motsatt riktade bindningarna släcker ut varandras polaritet, så att molekylen som helhet blir opolär, trots att de ingående bindningarna är polära.

Detta är exempel på att man måste känna till den tredimensionella strukturen hos en molekyl för att veta om den faktiskt är polär.

I kvävgas (N2) är båda atomerna lika elektronegativa. Bindningen mellan atomerna är därför opolär.
CC
En bindning mellan samma atomslag är opolär

Mellan olika atomslag finns det alltid en viss skillnad i elektronegativitet. Skillnaden kan vara stor eller liten, men inga atomslag av två olika grundämnen har exakt samma egenskaper. Däremot är två atomer av samma atomslag exakt likadana. Det betyder också att bindningen mellan dem är helt opolär. Exempel på sådan molekyl är kvävgas.


Förening mellan metall och ickemetall

I en kristall natriumklorid är den positiva Na+-jonen (lila) omgiven av negativa Cl-joner (grön) och vice versa.
CC Benjah-bmm27
Joner är alltid polära

I föreningar mellan metall och ickemetall är skillnaden i elektronegativitet så stor att en eller flera elektroner hoppat över helt och hållet från metallen till ickemetallen. Kvar blir då positiva metalljoner och negativa ickemetalljoner. Polär betyder ”laddad”. Det innebär att joner, som ju alltid har en laddning, alltid är polära.

Ett typiskt exempel på en jonförening är natriumklorid, dvs. vanligt koksalt. Saltkristallerna är uppbyggda av tätt sammanpackade positiva natriumjoner och negativa kloridjoner. Varannan jon är positiv och varannan negativ för att plus- och minusladdningar ska komma så nära varandra som möjligt. Positiv och negativa laddningar attraherar nämligen varandra.

Några föreningar mellan metall och ickemetall är gränsfall

Några metaller är inte så elektropositiva, dvs. deras elektronegativitet är inte så låg. De finns i periodiska systemen i gränsområdet mellan metaller och ickemetaller. Halvmetallerna är sådana, men även några som betecknas som metaller är ändå inte så elektropositiva.

Ett sådant exempel är silver (Ag). När silver och klorid reagerar till silverklorid (AgCl), så är skillnaden i elektronegativitet för liten för att det ska bildas joner. Men bindningen är ändå starkt polär. Därför är bindningen i silverklorid polär kovalent. Silverklorid är visserligen ett polärt ämne, men inte så starkt polärt. Lösligheten i vatten är därför dålig.

material på avancerad nivå kommer att läggas in här

Vätebindning

Vätebindningar finns i vatten och i många organiska ämnen i kroppen. Vätebindningar ger ämnena polära egenskaper, såsom löslighet i vatten. Vätebindningarna är också viktiga för strukturen hos till exempel DNA.

I strukturformler brukar vätebindningen markeras med streckad linje.

Bindningskrafter inom och mellan molekyler

Kemiska ämnen hålls samman av starka bindningar såsom kovalenta bindningar i molekylföreningar och jonbindningar i salter. Bindningar inom föreningen är intramolekylära krafter.

Men de finns också bindningar mellan föreningarna, intermolekylära krafter.

intramolekylär = inom molekylen
intermolekylär = mellan molekyler

Intermolekylära krafter är svagare än de intramolekylära.

Vätebindning kan ske när vätet sitter på N, O eller F

Den så kallade vätebindningen hör dock till de starkare intermolekylära krafterna. Den kan beskrivas som en extra stark dipol-dipolbindning.

Vätebindning kan uppstå mellan ett väte som sitter på atomslaget N, O eller F i en molekyl och atomslaget N, O eller F i en annan molekyl.

Här är några exempel på kemiska föreningar som kan bilda vätebindningar:

Vatten: H2O kan vätebinda. Däremot kan inte analogen vätesulfid H2S vätebinda eftersom svavel inte är tillräckligt elektronegativ.
Vätefluorid: HF kan vätebinda. Däremot kan inte analogen vätebromid HBr vätebinda eftersom brom inte är tillräckligt elektronegativ.
Ammoniak: NH3 kan vätebinda.
Karboxylsyror: exempelvis ättiksyra, CH3COOH kan vätebinda.
Alkoholer: exempelvis etanol, CH3CH2OH kan vätebinda. Däremot kan inte analogen etantiol CH3CH2SH vätebinda eftersom svavel inte är tillräckligt elektronegativ. Isomeren CH3-O-CH3 till etanol har samma summaformel, men föreningen är en eter och sådana har inget väte som sitter direkt på syreatomen. Därför kan etrar inte vätebinda.
Aminer: exempelvis ettylamin, CH3CH2NH2 kan vätebinda. Undantag är tertiära aminer som trimetylamin N(CH3)3 eftersom det inte sitter någon väteatom direkt på kvävet. Inte heller kan analogen etanitiol CH3CH2SH inte vätebinda eftersom svavel inte är tillräckligt elektronegativ.

Vätebindning kan även ske till kloridjoner

Kloratomen är inte tillräckligt elektronegativ för att skapa ett elektronmoln med så hög täthet att vätebindningar kan skapas. En enskild kloratom kan däremot få tillräckligt tätt elektronmoln genom att ta upp en extra elektron så att en kloridjon skapas.

En lite udda variant av vätebindningar kan därför fås mellan den negativt laddade kloridjonen och vattenmolekyler i lösningen, exempelvis en koksaltlösning.

Bilden till höger är en ögonblicksbild av en simulering. Vätebindningarna är markerade med röda streck. Väteatomer är vita, syreatomer röda och kloridjonen är rosa.

Man kan se vätebindningar mellan vätet i vatten och kloridjonen, liksom vätebindning mellan vätet i en vattenmolekyl och syret i en annan vattenmolekyl.

N, O och F är starkt elektronegativa atomslag


Elektronmolnet kring en vattenmolekyl är starkt förskjutet från väteatomerna mot syreatomen.
"Water charge distribution" av Martin Chaplin

Atomslagen N, O och F är de mest elektronegativa atomslagen i hela periodiska systemet. Elektronegativa atomer har förmågan att dra till sig elektroner.

I vatten sitter vätet på en syreatom. Vätet har en kärna med laddningen +1 och en elektron med laddningen –1. En fri väteatom har därför nettoladdningen 0. Syret drar till sig elektronmolnet mycket effektivt, vilket leder till att det blir ett positivt laddningsöverskott δ+ på väteatomen. Vatten har två väteatomer, som sitter på syret. Även den andra väteatomen får ett positivt laddningsöverskott δ+. På motsvarande sätt får syreatomen ett dubbelt negativt laddningsöverskott 2δ–.

Det positiva vätet i en vattenmolekyl kan binda till det negativa syret i en annan vattenmolekyl med så kallad vätebindning. Bindningen är ovanligt stark för att vara en intermolekylär bindning. Det beror på att vätet är nästan ”naket” när elektronmolnet dragit sig undan så effektivt från vätet. Därmed kan vätet komma mycket nära syreatomen i den angränsande vattenmolekylen, vilket gör att den elektrostatiska attraktionen blir extra stark.

Vätebindningarna ger vattnet dess egenskaper

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vatten är det viktigaste lösningsmedlet, inte bara inom kemin, men också för livet på jorden. Vattnet har nämligen speciella egenskaper som beror på vätebindningarna mellan molekylerna.

På grund av polariteten hos vätebindningarna är vatten ett utmärkt lösningsmedel för polära ämnen såsom salter och organiska ämnen med polära grupper. Den vinklade formen hos vattenmolekylen ger en hexagonal struktur hos iskristallerna när vattnet fryser, vilket återspeglas i snöflingornas sexkantiga form. Iskristallerna hålls samman av vätebindningar. Vätebindningarnas styrka gör också att vattnets kokpunkt är mycket högre än den annars skulle vara.


Vätebindningarna ger struktur åt DNA

Vårt genetiska arv är kodat i DNA. Där finns basparen AT (Adenin och Tymin) och GC (Guanin och Cytosin). Det är viktigt att A verkligen parar med T och att G verkligen parar med C, annars skulle det bli oordning i den genetiska koden.


Basparning av Adenin och Tymin.

Basparning av Guanin och Cytosin.
"Base pair Adenine Tyhmine" av Yikrazuul" Public Domain Mark "Base pair Guanine Cytosine" av Yikrazuul" Public Domain Mark

Parningen blir rätt tack vare att A och T parar med två vätebindningar, men G och C parar med tre vätebindningar.

Hydrofil och hydrofob

Det grekiska ordet fili betyder kärlek, vänskap och dragning till. Motsatsen i grekiskan är fobi, som betyder fruktan eller rädsla för. Även ordet hydro kommer från grekiskan och anger att något har med vatten att göra.

Inom kemin talar vi om hydrofila eller hydrofoba egenskaper hos molekylgrupper eller hela molekyler. Förklaringen till de hydrofila och hydrofoba egenskaperna ligger hos attraktionskrafterna mellan partiklarna i en vattenlösning, det vill säga de intermolekylära bindningarna.

Vatten är ett starkt polärt lösningsmedel

Vi utgår från att vårt lösningsmedel är vatten.

Mellan vattenmolekylerna finns starka vätebindningar. Vätebindningarna orsakas av ett positivt laddningsöverskott på väteatomen och ett negativt på syreatomen. Vätet i en vattenmolekyl attraheras därför av syret i en angränsande vattenmolekyl. Det är den starka polariteten i vätebindningarna som är kännetecknande för vattnets egenskaper.

Det finns andra lösningsmedel som har liknande egenskaper som vatten. Ett exempel är metanol (CH3OH), som också har en OH-grupp och kan vätebinda. Ett annat exempel är ättiksyra (CH3COOH), som även den har en OH-grupp som kan vätebinda. Vatten är dock i en särställning bland lösningsmedel vad gäller styrkan hos polariteten.

Förklaringen bakom "lika löser lika"

I vattenlösningen binder vattenmolekyler till varandra med sina vätebindningar. En lösning förutsätter att lösningsmedlet och det lösta ämnet blandas ända ner på molekylnivå. Det lösta ämnet och lösningsmedlet är i väldigt nära kontakt med varandra. För att detta ska vara möjligt måste bindningen mellan det lösta ämnet och vattnet vara så stark att den kan konkurrera med vätebindningen mellan vattenmolekyler.

Polärt ämne i polärt lösningsmedel

En förutsättning för en stark bindning mellan det lösta ämnet och vatten är att det lösta ämnet också är polärt, det vill säga har laddningar som kan attrahera vattenmolekylernas laddningar. Exempelvis kan metanol, med sin polära OH-grupp, vätebinda till vattenmolekyler. För vattenmolekylerna gör det därför inte så stor skillnad om de binder till en annan vattenmolekyl eller till en metanolmolekyl. Vatten och metanol kan blandas ända ner på molekylnivå.

Ett annat exempel på polärt ämne är koksalt. Polariteten finns inbyggd i saltets byggstenar, som ju är jonerna Na+ och Cl. Polariteten hos saltet gör att det löser sig i vatten.

Opolärt ämne i polärt lösningsmedel

Vatten och olja separerar i två faser eftersom vatten är polärt, men olja opolär.
Bild: Svante Åberg

Om det lösta ämnet är opolärt, eller bara är svagt polärt, så skapas ingen stark bindning till vatten. Vattnet binder bara till andra vattenmolekyler. Det betyder att allt vatten klumpar ihop sig till en fas.

Det ämne som skulle lösas blir över och bildar en egen fas. Det är inte så att molekylerna i det opolära ämnet attraheras till varandra. Tvärtom är bindningarna mellan de opolära molekylerna svaga. Men det är helt enkelt så att de blir över när vattenmolekylerna håller ihop.

Bildningen av faser bygger på att polära och opolära ämnen inte blandar sig med varandra. Sedan gör skillnaden i densitet att den ena fasen flyter upp och den andra sjunker. Om du försöker blanda vatten (polärt) med bensin (opolärt), så kommer den lättare bensinen att lägga sig som ett lager ovanpå vattnet. Bensinen utgör den ena fasen och vattnet den andra.

För att lättare förstå hur detta fungerar kan du tänka dig att du har en kulpåse med stenkulor och små runda magneter. Om du skakar på påsen ett tag, så kommer magneterna att klumpa ihop sig. Över blir stenkulorna, som ligger för sig själva. Magneterna motsvarar vattenmolekyler och stenkulorna opolära molekyler i denna liknelse.

Opolärt ämne i opolärt lösningsmedel

När lösningsmedlet är opolärt, som till exempel bensin, så finns inga starka bindningar mellan molekylerna i lösningsmedlet. Det gör det lätt för andra molekyler att konkurrera med bindningarna mellan lösningsmedelsmolekylerna. Till exempel kan opolära jodmolekyler lösa sig i bensin. Bindningen mellan jod och bensin är visserligen svag, men det gör inget eftersom bindningen mellan två bensinmolekyler också är svag. Det lösta ämnet och lösningsmedlet blandar sig ner på molekylnivå.

Detta exempel kan illustreras med en kulpåse där man har stenkulor och glaskulor. Även om det är olika sorters kulor, så blandas de med varandra om påsen skakas, eftersom inga kulor attraherar varandra.

Hydrofob effekt


Fosfolipider kan bilda olika strukturer som bygger på den hydrfoba effekten där den opolära delen av molekylen undviker kontakt med vattnet.
"Phospholipids aqueous solution structures" av Mariana Ruiz Villarreal, LadyofHats" Public Domain Mark

Hydrofob effekt är tendensen hos opolära ämnen att klumpa sig samman i vattenlösningar och utestänga vattenmolekyler.

Exempel är bildningen av cellmembran där fosfolipider vänder sin opolära (hydrofoba) ände in mot membranets mitt och den polära (hydrofila) delen ut mot vattenlösningen. Cellmembranet är ett bilager där dess inre hydrofoba del är gömd från kontakt med vattnet.

Ett annat exempel är hydrofoba områden på proteiner. Sådana områden har en förmåga att binda till sig opolära molekyler. Ofta är enzymers funktion kopplade till sådan hydrofob effekt hos den aktiva ytan på enzymet.

Veckningen av de långa aminosyrakedjorna till proteiner med en mycket bestämd form styrs till stor del av den hydrofoba effekten. Fel på en enda aminosyra i den långa sekvensen kan göra att proteinet inte får rätt form och därför inte fungerar som det ska i kroppen.

Den vanliga tvättmekanismen hos tvål, tvättmedel eller diskmedel är också ett resultat av den hydrofoba effekten. Fettpartiklar bakas in av de detergentmolekylerna vars opolära svansar löser sig i fettet med de polära huvudena pekande utåt mot vattenlösningen. Fettpartiklarna blir helt täckta av detergenten så att det liknar en ryamatta.

Termodynamik och hydrofob effekt

Inom termodynamiken finns två drivkrafter för kemiska förändringar. Det ena är strävan mot lägsta energi, det andra strävan mot högsta entropi.

Ett system går mot lägre energi när starka bindningar skapas. Exempel är vätebindningarna mellan vattenmolekylerna. Om bindningarna mellan vattenmolekylerna bryts, till exempel genom att andra molekyler lägger sig i vägen, så ökar systemets energi. Det krävs nämligen energi att sära på vattenmolekylerna. Detta går dock tvärtemot systemets tendens att minimera sin energi. Strävan mot minimering av energin gynnar den hydrofoba effekten.

Dock är det så att entropin, som kan beskrivas som graden av oordning, ökar när olika molekyler blandas. Den normala tendensen för system är att gå mot större oordning (högre entropi). Strävan mot ökad entropi motverkar därför den hydrofoba effekten.

Temperaturen är också en faktor som har betydelse. Ju varmare det är, desto häftigare är molekylrörelserna. Ju kraftigare molekylrörelserna är, desto större tendens är det att molekylerna ska blandas med varandra. Ökad temperatur medför därför minskad hydrofob effekt. Det går också att förklara med att när tillgången på energi är hög, så drivs systemet mot en högre energi.

Drivkraften bakom de kemiska reaktionerna kan sammanfattas med Gibbs energi, som också benämns fri entalpi:

ΔG = ΔH - T·ΔS, där

G = Gibbs energi (J)
H = entalpi (systemets inre energi + produkten p·V) (J)
S = entropi (J K–1)
T = absolut temperatur (K)
Δ anger en förändring av ...

Den spontana reaktionsriktningen är när ΔG < 0. Negativa värden på ΔH och positiva värden på ΔS garanterar spontan reaktionsriktning. Ökande temperatur T förstärker effekten av ΔS.

Litteratur

  1. Göran Rämme, Soap bubbles in art and education, 1998, Science Culture Technology Publishing, Singapore.
  2. Göran Rämme, Experiments with soap bubbles and soap films, 2006, Göran Rämme, Uppsala.
  3. Main page, Wikipedia
    http://en.wikipedia.org/wiki/Main_Page (2007-08-22)
    • Soap bubble
      http://en.wikipedia.org/wiki/Soap_bubble (2007-08-22)
    • Detergent
      http://en.wikipedia.org/wiki/Detergent (2007-08-22)
    • Surfactant
      http://en.wikipedia.org/wiki/Surfactant (2007-08-22)
    • Soap
      http://en.wikipedia.org/wiki/Soap (2007-08-22)
    • Sodium dodecyl sulfate
      http://en.wikipedia.org/wiki/odium_dodecyl_sulfate (2007-08-22)
    • Sodium laureth sulfate
      http://en.wikipedia.org/wiki/Sodium_laureth_sulfate (2007-08-22)
    • Surface tension
      http://en.wikipedia.org/wiki/Surface_tension (2007-08-22)
    • Micelle
      http://en.wikipedia.org/wiki/Micelle (2007-08-22)
    • Critical micelle concentration
      http://en.wikipedia.org/wiki/Critical_micelle_concentration (2007-08-22)
    • Chemical polarity
      http://en.wikipedia.org/wiki/Chemical_polarity (2007-08-22)
    • Natural fiber
      http://en.wikipedia.org/wiki/Natural_fiber (2007-08-22)
    • Wool
      http://en.wikipedia.org/wiki/Wool (2007-08-22)
    • Hair
      http://en.wikipedia.org/wiki/Hair (2007-09-23)
    • Protein
      http://en.wikipedia.org/wiki/Protein (2007-08-22)
    • Cotton
      http://en.wikipedia.org/wiki/Cotton (2007-08-22)
    • Cellulose
      http://en.wikipedia.org/wiki/Cellulose (2007-08-22)
    • Glucose
      http://en.wikipedia.org/wiki/Glucose (2007-09-24)
  4. Hemsida, Nationalencyklopedin
    http://www.ne.se/ (2007-10-01)
    • ull
      http://www.ne.se/jsp/search/article.jsp?i_art_id=335131&i_word=ull (2007-10-01)
    • aminosyror
      http://www.ne.se/jsp/search/article.jsp?i_art_id=113340&i_word=aminosyror (2007-10-01)
    • tvättmedel
      http://www.ne.se/jsp/search/article.jsp?i_art_id=333782&i_word=tv%e4ttmedel (2007-10-01)
  5. Textile Fibres - Wool, E4S - Environmental Teaching Resources
    http://www.e4s.org.uk/textilesonline/content/6library/report1/textile_fibres/wool.htm (2007-09-10)
  6. Textile Fibres - Cotton, E4S - Environmental Teaching Resources
    http://www.e4s.org.uk/textilesonline/content/6library/report1/textile_fibres/cotton.htm (2007-09-10)
  7. Cotton Uses, UNCTAD
    http://r0.unctad.org/infocomm/anglais/cotton/uses.htm (2007-09-10)
  8. Bomullsbuske, Shenet
    http://www.shenet.se/vaxter/bomull.html (2007-09-10)
  9. Svanmärkta diskmedel, Svanen
    http://www.svanen.nu/produkter/trafflista.asp?produktkategori=025 (2007-08-22)
  10. Tensider, Shenet
    http://www.shenet.se/ravaror/tensider.html (2007-08-22)
  11. Natriumlaurylsulfat, Shenet
    http://www.shenet.se/ravaror/natriumlaurylsulfat.html (2007-08-22)
  12. World Bubble Records, Bubble Blowers
    http://bubbleblowers.com/records.html (2007-09-10)
  13. Lipids, William Reusch, Michigan State University
    http://www.cem.msu.edu/~reusch/VirtualText/lipids.htm (2007-10-02)

Fler experiment


fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

kemisk bindning
Att vara kemisk detektiv
Bestäm CMC för diskmedel
Blandningar av lösningsmedel
Diska med äggula
Ett målande experiment - att rengöra en målarpensel
Frigolit i aceton
Färga ullgarn med svampar
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör hårt vatten mjukt
Gör kopparslanten skinande ren - med komplexkemi
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Kemisk vattenrening
Kristallvatten i kopparsulfat
Lödtenn 60
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
Permanenta håret
Slime
Studsboll
Såpbubblor
Tag bort rostfläcken med det ämne som gör rabarber sura
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Tillverka papperslim
Trolleri med vätskor
Tvätta i hårt vatten
Undersök en- och flervärda alkoholer
Varför färgas textiler olika?
Vattenrening
Visa ytspänning med kanel

vardagens kemi
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Bestäm CMC för diskmedel
Blev disken ren?
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Den omöjliga tvålen - den är preparerad!
Diska med äggula
Eld - varför brinner det?
Eldprovet
Enzymaktivitet i ananas
Enzymer i Tvättmedel
Ett gammalt tvättmedel, del 1: Salt ur björkaska
Ett gammalt tvättmedel, del 2: Tvål ur saltet
Ett målande experiment - att rengöra en målarpensel
Falu rödfärgspigment ur järnvitriol
Framställ en detergent
Framställ låglaktosmjölk
Fruktköttet får solbränna
Färga ullgarn med svampar
Färgämnen i M&M
Gore-Tex, materialet som andas
Gör din egen limfärg
Gör din egen tandkräm
Gör ditt eget läppcerat
Gör hårt vatten mjukt
Göra lim av kasein
Hockey-visir
Hur fungerar en torrboll?
Hur gör man kakan porös?
Hur moget är äpplet?
Hur smakar salmiak?
Karbidlampan
Kemi i en brustablett
Kemisk vattenrening
Majonnäs - en emulsion
Maskrosen som krullar sig
Modellmassa av mjölk
Myggmedel - hur funkar det?
Målarfärgens vattengenomsläpplighet
När flyter potatisen?
Olja som lösningsmedel
Optiska Vitmedel
Osmos i ett ägg
Osynlig gas
Pektin och marmeladkokning
Pelargonens färg
Permanenta håret
Pulversläckare
Rengöra silver
Rostbildning och rostskydd
Skär sig majonnäsen?
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Superabsorbenter i blöjor
Surt regn
Syror och baser i konsumentprodukter
Såpbubblor
Tillverka din egen deodorant
Tillverka din egen glidvalla
Tillverka din egen tvål, del 1: Själva tvålen
Tillverka din egen tvål, del 2: Parfymera och färga tvålen
Tillverka ditt eget läppstift
Tillverka Falu rödfärg enligt gammalt recept
Tillverka papperslim
Tillverka rengöringskräm
Tvätta i hårt vatten
Utfällning av aluminium
Utvinna järn ur järnberikade flingor
Vad händer då något brinner?
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Vad är skillnaden mellan maskin- och handdiskmedel?
Varför färgas textiler olika?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför rostar järn och hur kan man förhindra det?
Varför slipper bilen varma yllekläder på vintern?
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Vattenrening
Visa ytspänning med kanel
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Ägget i flaskan
Ärg på en kopparslant
Äta frusen potatis