Älskling, jag krympte ballongen

Tillhör kategori: fysikalisk kemi, jämvikt, syror och baser

Författare: Amanda Forsman

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Tid för förberedelse: 20 minuter

Tid för genomförande: 30 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Kräver viss labvana

Introduktion

Experimentet går ut på att förklara varför en ballong ökar och minskar i storlek när den är innestängd i en flaska. Det hela är inte alltför olika det man kan uppleva när man får sura uppstötningar.

Riktlinjer

Passar som elevförsök, grupparbete eller demonstration.

Säkerhet

Kemikalierna som används är praktiskt taget ofarliga. Ättiksyra är en svag syra och bikarbonat är en svag bas. Undvik dock stänk i ögon och på kläder.

Avfallet från experimenten kan hällas ut i slask och kastas i papperskorg.

Materiel

Förarbete

Inget förarbete

Utförande

  1. Tag en flaska och blås upp en ballong inuti och knyt åt. Det här kan vara lite klurigt, men det går.
  2. Putta ner ballongen så den hamnar på botten. Se till att ballongen inte tar i flaskan när den är uppblåst.
  3. Häll ättika och bikarbonat i flaskan och skruva genast åt korken.
  4. Iaktta vad som händer. Kan man se någon skillnad på ballongen? Hur känns flaskan?
  5. Vad händer om man skruvar av korken? Förklara innan du provar!

Variation

I stället för vatten, bikarbonat och ättika kan man använda bakpulver och vatten. Bakpulver innehåller nämligen både bikarbonat och syra.

Man kan också använda en sockerlösning i vilken man blandar i jäst. "Lös upp" jästen i lite fingervarmt vatten och blanda i sockerlösningen som sedan hälls i flaskan med ballongen. Jästcellerna kommer att förbruka socker och utveckla koldioxid som sedan avges till luften i flaskan. Processen är långsammare än den med bikarbonat, men resultatet blir detsamma.

Förklaring

Gasutveckling sker och trycket i PET-flaskan ökar, den känns hårdare. Trycket i ballongen är lägre vilket medför att ballongen trycks ihop. När korken öppnas minskar trycket i flaskan och ballongen ökar i storlek igen.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Experimentet

Detta är förklaringen

I experimentet reagerar bikarbonatet med syran och koldioxid bildas. Gasen tar mycket större plats än de ursprungliga ingredienserna. Därför ökar trycket i PET-flaskan. Det ökade trycket medför att "väggarna" på PET-flaskan trycks utåt, men flaskan är så pass stabil att den inte ändrar form. Då trycket i flaskan ökar kläms ballongen ihop och blir mindre. Ballongen är lättare att påverka än den stela flaskan eftersom materialet, latex, som ballongen är tillverkad av är elastiskt. Om PET-flaskan hade varit mjuk och mycket mer töjbar än ballongen hade PET-flaskans väggar tryckts utåt och ballongen hade mer eller mindre bevarat sin ursprungliga storlek.

Vid start är gastrycket i flaskan lika med atmosfärstrycket och ballongen har inte hunnit påverkas. Efter en stund har gastrycket i flaskan ökat, villket gör att ballongen komprimeras så mycket att gastrycket inuti ballongen precis balanserar det yttre trycket.
Observera att i figurerna har vi inte tagit hänsyn till att ballongen är elastisk, vilket också påverkar trycket.
Bilder: © Svante Åberg
Ballongens elasticitet

Ska man var noga när man beskriver trycket i ballongen så måste man ta hänsyn till att ballongen är elastisk, vilket gör att den vill dra ihop sig. Det gör att trycket inne i ballongen måste balansera både det yttre atmosfärstrycket och det tryck som spänsten i materialet orsakar. Principen att ett tryck alltid motsvaras av ett lika starkt mottryck.


Gastrycket hos den inneslutna luften i ballongen balanseras precis av lufttrycket utanför ballongen plus ballongens elastiska sammandragning. Ifall luften är innestängd i en plastpåse som bara är delvis fylld, så bidrar inte påsen med något eget tryck, utan det är enbart det yttre lufttrycket som balanseras.
Bild: © Svante Åberg
Diffusion genom materialet i ballongen?

Materialet som ballongen består av är latex. Latex är antagligen inte helt tät mot koldioxid. Om man låter flaskan med ballongen stå en längre tid och sedan öppnar flaskan, så sväller ballongen till en storlek som är större än den ursprungliga. Den sannolikaste förklaringen är att koldioxid som bildats genom reaktionen mellan karbonat och syra diffunderar in genom materialet. Den totala gasmängden i ballongen blir därför större än från början.

En alternativ förklaring är att latex förlorar sin spänst när den är i kontakt med fukt och därför inte kan motstå det inre trycket lika bra.

Gasers egenskaper

Gasen fyller upp hela volymen

En gas fyller upp hela det kärl som den förvaras i.
Bild: © Svante Åberg

En gas tar alltid upp allt utrymme den har att tillgå. Det beror på att gasmolekylerna rör sig så snabbt att de helt frigjort sig från varandra. Molekylerna färdas rakt fram till dess de stöter emot kärlets väggar eller kolliderar med varandra.

I bilden fyller den upp hela behållaren. Om locket sluter tätt kan trycket i behållaren påverkas. Trycket ökar om volymen minskar, temperaturen ökar eller om substansmängden ökar. I detta experiment bildas gas vilket innebär att substansmängden ökar och så gör trycket.

Sambandet mellan tryck (p), volym (V), temperatur (T) och substansmängd (n) beskrivs av allmänna gaslagen som lyder:

p·V = n·R·T (R = 8,314 J K-1 mol-1)

Diffusion

Gas kan diffundera genom vissa material. Diffusion är en spontan transport på molekylär nivå av oftast gaser eller vätskor. Diffusionen sker alltid så att koncentrationsskillnader tenderar att jämnas ut.

Koncentrationen av en gas vill jämna ut sig. Den ska inte vara hög på ett ställe och låg på ett annat. Tänk dig att du står i ett hörn i ett rum och fiser. Efter ett tag kommer det att lukta i närmaste omgivningen och sedan kommer det att lukta i hela rummet, men ju mer fisen sprider sig desto mindre luktar det (gasen får en lägre koncentration).

Gas diffunderar med gradienten, dvs. från hög koncentration till låg.
Bild: © Amanda Forsman

Tänk dig en helt tätt glaslåda och det sitter ett ogenomträngligt membran i mitten. Nu har du en glaslåda med två täta hålrum och du sätter gas i ett av hålrummen. Gasen stannar kvar i det hålrummet då den inte kan sprida sig till andra sidan. Nu byter du ut membranet mot ett annat som släpper igenom gaser och då sprider sig gasen till andra sidan. Gasen diffunderar med gradienten alltså från den sida där det finns mycket gas till den sida där det finns lite, till dess att det finns lika mycket på båda sidorna.

Membran kan vara semipermeabla, det vill säga att de bara släpper igenom vissa ämnen. Våra celler är ett sådant typ av membran. Förutom aktiva portar där vissa ämnen pumpas in i cellen och energi åtgår, så kan vissa ämnen diffundera in i cellen utan att det kostar cellen energi får att få in dessa.

Kemikalierna

Bikarbonat

Baka bröd är någonting de flesta har gjort. Ibland jäser man bröden med hjälp av jäst. Då sker en alkoholfermentering (jäsning). Det är när koldioxid och etanol bildas via en oxidation av glukos utan tillgång syre. Andra gånger använder man t.ex. bakpulver som innehåller bikarbonat och en syra i pulverform, en blandning av olika sura fosfater. Även bikarbonat finns i de flesta skafferier. När man bara säger "bikarbonat", så brukar man mena ämnet natriumbikarbonat, vilket också kallas natriumvätekarbonat, NaHCO3. Bikarbonat får brödet att jäsa eftersom karbonater avger koldioxid då de kommer i kontakt med en syra, se reaktionsformel 1.

Formel 1: HCO3 + H+ ⇄ CO2 + H2O

Bikarbonat kan man använda om man har sura uppstötningar. Sura uppstötningar är när magsaften (HCl) tränger upp i matstrupen igen. Bikarbonat (och andra karbonater) reagerar med vätejoner och har därmed en förmåga att neutralisera syra. Detta lindrar besvären.

Om man värmer bikarbonat bildas också koldioxid, men då bildas dessutom soda (natriumkarbonat) som har en speciell smak. Därför används bikarbonat oftast i degar som innehåller sura ingredienser t.ex. fil eller citronsyra. Då bildas koldioxiden i stället genom reaktion med syra.

Exempel på karbonater i hemmet är hjorthornssalt (ammoniumvätekarbonat, NH4HCO3), målarsoda (natriumkarbonat, Na2CO3, som inte används vid bakning!!!). Både äggskal, räkskal, kalksten och marmor innehåller kalciumkarbonat, CaCO3.

Ättika

Ättiksyra (CH3COOH) är en vanlig syra i hemmet och man kan känna smaken av den när man lämnar vin öppen och utsatt för syre över natten. Då det alkoholhaltiga vinet jäser bildas ättiksyra. Det är så man tillverkar vinäger. Man kan även framställa ättika genom att torrdestillera trä. Detta är den vanligaste framställningsmetoden för ättika i Sverige. Lövträ ger den bästa ättikan men den måste renas från träsprit och annat. Ättika kan användas som konserveringsmedel (E 260).

Fördjupning

Gas

Gaser har speciella egenskaper som skiljer dem från vätskor och fasta ämnen. I en gas är avståndet mellan partiklarna mycket större än i en vätska. Avståndet är så stort att det inte finns några intermolekylära krafter som håller ihop partiklarna. De rör sig med stor hastighet, oordnat och fritt från varandra.

Gastryck av molekylernas kollisioner

En molekyl är väldigt liten, men det finns väldigt många! Varje gång en molekyl stöter emot ytan, på en burk t ex, så ger den en liten rekyl som tenderar att stöta bort föremålet. Alla molekylernas stötar ger tillsammans ett tryck som är större än man normalt föreställer sig. Vid normalt lufttryck är kraften 1000 N per dm2. Det motsvarar tyngden av 100 kg på varje kvadratdecimeter eller tyngden av 10 ton på varje kvadratmeter!

Att inte burkar, människor, fotbollar med mera trycks ihop av de väldiga krafterna beror på att det finns ett mottryck inifrån som är lika stort.

I figuren nedan ser man att det är fler molekyler som kolliderar med väggen på vänster sida än på höger. Gastrycket är alltså högre på vänster sida om väggen.

Gastrycket orsakas av molekylernas många små stötar. Gastrycket till vänster om väggen är högre därför att det är fler kollisioner.
Bild: © Svante Åberg

Kollisionerna på ömse sidor om väggen är ungefär lika kraftiga, vilket betyder att partiklarna rör sig ungefär lika fort. Man kan alltså dra slutsatsen att temperaturen är densamma på båda sidor om väggen.

Temperatur, kärlets volym och substansmängden påverkar trycket

Partiklarna kolliderar med varandra och med det omgivande kärlet. Det utgör gasens tryck. Trycket hos en gas beror på flera saker:

Alltså, trycket är proportionellt mot absolut temperatur och substansmängd och omvänt proportionellt mot volymen. Detta kan sammanfattas i Allmänna gaslagen.

Allmänna gaslagen:
pV = nRT
p = tryck, Pa
V = volym, m3
n = substansmängd, mol
T = temperatur, Kelvin
R = proportionalitetskonstant = 8,3145 J K-1 mol-1

Molvolym

Gasmolekylernas sammanlagda volym är väldigt liten i förhållande till gasens totala volym. Detta gör att en viss substansmängd av i stort sett alla gaser har samma volym vid samma tryck och temperatur. Gaserna har samma molvolym, och vid standardtryck och standardtemperatur (STP: p = 1 atm = 101,325 kPa = 1,01325 bar, T = 25 °C = 298,15 K) är molvolymen 24,47 dm3/mol.

Gasens densitet

Enklast är att räkna på en mol av gasen. Till exempel väger en mol koldioxid (CO2) 12,0 g + 2·16.0 g = 44,0 g. Vid standardtemperatur och tryck (se ovan) är molvolymen 24,47 dm3. Då är densiteten 44,0 g/24,47 dm3 = 1.80 g/dm3.

Luft består till ungefär 20% av syrgas (O2) och 80% kvävgas (N2). En mol syrgas väger 2·16.0 g = 32.0 g. En mol kvävgas väger 2·14.0 g = 28.0 g. En mol luft innehåller 0,20 mol syre och 0,80 mol kväve. En mol luft väger då 0,20·32,0 g + 0,80·28,0 g = 28,8 g. Vikten genom molvolymen blir då 28,8 g/24,47 dm3 = 1.18 g/dm3.

Dessa två beräkningar visar att koldioxid är tyngre än luft. Därför sjunker koldioxid till marken när den släpps ut i luften.

En motsvarande beräkning av densiteten för vattenånga (H2O) ger densiteten 18,0 g/24,47 dm3 = 0,73 g/dm3. Man kan alltså se att vattenångan är mycket lättare än luften. Därför stiger vattenånga som avdunstar från marken och vattendragen uppåt i osynliga bubblor av ånga. När vattenångan kommit tillräckligt högt är temperaturen så låg att den kondenserar till vattendroppar och blir synlig i form av moln.

Gaspartiklarnas rörelseenergi

Gaspartiklarna rör sig slumpmässigt, men i genomsnitt har de en rörelseenergi som motsvarar temperaturen. Ju högre temperaturen är, desto snabbare rör sig partiklarna. Temperaturen är därför ett mått på gaspartiklarnas rörelseenergi.

När man har en blandning av gaspartiklar som väger olika mycket, så får olika tunga partiklar ändå samma genomsnittliga rörelseenergi. Det innebär att tunga gaspartiklar rör sig långsammare än lätta gaspartiklar, annars skulle inte rörelseenergierna vara lika.

Till exempel rör sig vätemolekyler (H2) med molekylmassan 2 u 3.74 gånger snabbare än kvävemolekyler (N2) med molekylmassan 28 u. Man skulle kunna tro att vätet skulle röra sig 14 gånger snabbare eftersom kvävet är 14 gånger tyngre, men rörelseenergin är proportionell mot kvadraten på hastigheten. Därför blir kvoten mellan hastigheterna √ 28/2 = √ 14 = 3.74.

Gaslagar

Volymen och/eller trycket hos en gas varierar med temperaturen. Det beror på att med ändrad temperatur ändras gasmolekylernas rörelsehastighet. Om temperaturen sänks avtar hastigheten, krockarna mellan molekyler och molekyler och väggar blir mildare och rekylerna mindre. Om väggen kan krympa (t.ex. i en ballong) minskar volymen.


Gastrycket hos den inneslutna luften i ballongen balanseras precis av lufttrycket utanför ballongen plus ballongens elastiska sammandragning. Ifall luften är innestängd i en plastpåse som bara är delvis fylld, så bidrar inte påsen med något eget tryck, utan det är enbart det yttre lufttrycket som balanseras.
Bild: © Svante Åberg

Volymen och/eller trycket beror också på substansmängden gas, dvs. hur många mol gas vi har. En större mängd kräver antingen större volym eller ger högre tryck.

För att uttrycka sambanden mellan olika tryck, volym, temperatur och substansmängd hos gaser används följande beteckningar och enheter:

p = tryck (N/m2)
V = volym (m3)
T = absolut temperatur (K)
n = substansmängd (mol)
R = proportionalitetskonstant i allmänna gaslagen med värdet 8,314 J K-1 mol-1
k1, k2 osv. = proportionalitetskonstanter i gaslagarna med olika enheter

Allmänna gaslagen (gasernas allmänna tillståndsekvation) sammanfattar sambanden mellan substansmängd, temperatur, tryck och volym till en formel:

p·V = n·R·T (R = 8,314 J K-1 mol-1)

Evangelisto Torricello

Gaslagarna började undersökas 1643. Det började med barometern och en man som hette Evangelisto Torricello (1608-1647). Torricello använde kvicksilver för att tillverka den första barometern 1643.

Torricello fick ingen gaslag uppkallad efter sig. Däremot blev han ärad genom enheten Torr för tryck. En Torr motsvarar en mm av kvicksilverpelaren i hans barometer.

Boyles gaslag - trycket gånger volymen är konstant

Detta ledde till att Robert Boyle (1627-1691) kunde upptäcka sambandet mellan tryck och volym. År 1622 publicerade Boyle det som idag är känt som Boyles lag, dvs. att volymen av en gas är omvänt proportionell mot det absoluta trycket. Det kan också uttryckas som att produkten av trycket och volymen är konstant.

Sambandet mellan tryck och volym visas i Boyles lag:

p·V = k1 (vid konstant T och n)

Charles gaslag - volymen är proportionell mot absoluta temperaturen

I slutet av 1700-talet tog Jacques Charles (1746-1823) nästa steg på vägen mot gasernas allmänna lag. Charles gjorde vetenskapliga undersökningar om sambandet mellan trycket och temperaturen hos gaser i slutna behållare med konstant volym och kom fram till Charles lag, men han publicerade aldrig sitt arbete och det var inte förrän 1808 som resultaten publicerades. Han visade att volymen är proportionell mot absoluta temperaturen under förutsättning att trycket hålls konstant.

Sambandet mellan volym och temperatur visas i Charles lag:

V = k2·T (vid konstant p och n)


När man prickar in de experimentellt erhållna värdena för volym och temperatur kan man extrapolera den räta linjen till absoluta nollpunkten.
Bild: © Svante Åberg

Gay-Lussacs gaslag - trycket är proportionellt mot absoluta temperaturen

Resultaten publicerades då av Joseph Gay-Lussac (1778-1850) som hade gjort de slutliga mätningarna. Gay-Lussac fortsatte att undersöka sambandet mellan volymen och temperaturen hos inneslutna gaser vid konstant tryck och idag finns Gay-Lussacs lag uppkallad efter honom.

Sambandet mellan tryck och temperatur visas i Gay-Lussacs lag:

p = k3·T (vid konstant V och n)

Dalton gaslag - det totala gastrycket är summan av partialtrycken för de enskilda gaserna i en blandning

Daltons lag presenterades 1801 av John Dalton (1766-1844): det totala trycket av en blandning av är lika med summan av det partiala trycket av varje enskild gas. Partialtrycket är trycket som varje gas skulle utöva om det ensam befann sig i samma volym som de blandade gaserna med samma temperatur.

Sambandet mellan partialtrycken och det totala trycket visas i Daltons lag:

p = p1 + p2 + p3 + ... (vid konstant T och V)

Avogadros gaslag - volymen är proportionell mot substansmängden

År 1811 publicerade Amadeo Avogadro (1776-1856) en artikel som presenterade att alla gaser vid samma temperatur och tryck, lika volymer av olika gaser innehöll samma antal molekyler. Denna idé ignorerades i nästan 50 år och det var inte förrän Stanisalo Cannizaro 1860 presenterade Avogrados arbete som man erkände det. Idag kallas en mol för Avogadros konstant. Genom denna upptäckt börjar vår moderna syn på gaser.

Sambandet mellan volym och substansmängd visas i Avogadros lag:

V = k4·n (vid konstant T och p)

Allmänna gaslagen

Alla dessa samband kan sammanföras i den allmänna gaslagen eller gasernas allmänna tillståndsekvation:

p·V = n·R·T (R = 8,314 J K-1 mol-1)
Ideala gaser

Den allmänna gaslagen har vissa begränsningar. Den förutsätter att gasmolekylerna inte påverkar varandra. Vid höga tryck eller temperatur nära kondensationspunkten får de så låg energi eller kommer så nära varandra att detta inte gäller. Man har infört begreppet ideala gaser för de tänkta gaser som inte har några intermolekylära krafter. I den ideala gasen antas också att själva gasmolekylerna saknar volym.

Mer om vetenskapsmännen bakom lagarna

Det verkar ha rått delade meningar under olika tider och i olika länder om vilken vetenskapsman som ska namnge vilken lag. En presentation av männen ger en inblick i naturvetenskapens utvecklingshistoria under tre sekler.

Robert Boyle

Boyle var son till en brittisk earl och levde 1627-1691. Han studerade både i hemlandet och i Genève och Florens. Boyle ägnade mycket tid åt experiment, något som inte var så vanligt på den tiden. Studier av fysikaliska och kemiska fenomen i lufttomt rum studerades, bl.a. Boyles tankar runt hur små enheter av materia förenas i bestämda grupperingar var början till molekylbegreppet.

Jacques Charles

Charles var fransman och levde 1746-1833. Han blev professor i fysik och var pionjär på ballongflygningens område.1783 gjorde han den första uppstigningen med sin egenhändigt konstruerade vätgasballong. Han ägnade bl.a. sin forskning åt att studera hur gasers volym påverkas av temperaturen.

Joseph-Louis Gay-Lussac

Gay-Lussac var också fransman och professor i fysik. Han levde 1778-1850. Gay-Lussac gjorde ballonguppstigningar och tog luftprover från olika höjder. Han upptäckte att väte och syre förenades till vatten i volymförhållandet 2 till 1 och fortsatte att studera gasreaktioner. Vidare förbättrade han framställningstekniken för natrium, kalium och svavelsyra och upptäckte grundämnet bor.

John Dalton

Dalton som levde 1766-1844 är känd som den moderna atomteorins grundare. Den formulerades i början av 1800-talet och stod sig i nästan 100 år. Dalton observerade viktförhållandet mellan olika ämnens minsta partiklar och detta ledde honom till atomteorin. Han antog att grundämnen bestod av med en för ämnet karaktäristisk massa. Dalton skrev meteorologisk dagbok i 57 år och gjorde undersökningar på partiell färgblidhet.

Amadeo Avogadro

Italienaren Avogadro, som levde 1767-1856, var först jurist och ämbetsman. Han blev, efter att ha bytt bana, professor i naturfilosofi och fysik. Inspirerad av Gay-Lussacs studier av gasers volymförhållanden vid kemiska reaktioner formulerade han tesen att alla gaser vid samma tryck och temperatur innehåller samma antal molekyler. Detta accepterades på 1860-talet.

Avogadro har fått ge namn åt Avogadros konstant, antalet molekyler eller partiklar i substansmängden en mol.

Diffusion genom membran

Molekylrörelsen sprider partiklarna

Molekyler och andra partiklar har kinetisk energi om de har en temperatur över den absoluta nollpunkten -273 °C. Denna energi gör så att molekyler alltid är i rörelse. I fasta ämne kan partiklarna bara vibrera, men i gaser och lösningar kan partiklarna börja vandra omkring. Det gör att partiklarna blandas med varandra.

Diffusion är ett resultat av denna rörelse. Rörelsen gör att alla molekyler eller joner oavsett ämne sprider sig i så hög grad de kan, precis på samma sätt som värme sprider sig. Alla molekylers rörelser är slumpvisa vad gäller riktning men de rör sig fortare ju mer värmenergi de har, dvs. ju större lagrad hetta.

Trots att rörelserna är slumpvisa så kan man med hjälp av sannolikhetslära bestämma att nettotransporten av en viss typ av molekyler kommer att ske till största del i en viss riktning under en bestämd tid. Statistiken visar att nettotransport sker från områden med hög koncentration till områden med låg.

Ett membran blir en barriär som skiljer lösningar åt

Man kan skilja två lösningar eller gasblandningar åt med ett membran. Sammansättningen av partiklar blir då olika på de två sidorna. Eftersom diffusionen tenderar att blanda partiklarna så att det till slut blir lika koncentration överallt, så får man en nettotransport över membranet åt ett bestämt håll som beror på koncentrationerna.

Diffusionen genom membranet är alltid långsammare än i lösningen eller gasblandningen. Men hastigheten kan ökas genom att välja ett membran som dels är väldigt poröst, dels mycket tunt.

Membranet kan fungera som ett filter

En möjlighet med membraner är att sortera bort större partiklar som inte ryms i porerna. Till exempel kan diffusion av vatten genom membran användas för vattenrening. Både smutspartiklar och bakterier undviks då.

Diffusion genom membran som skiljer två lösningar med olika koncentration

Nettotransporten vid diffusion sker från hög koncentration till låg.
Bild: Svante Åberg

I bilden föreställer de blå partiklarna ett löst ämne. Lösningen kan vara en vätska, men gasblandningar är också en typ av lösningar. Barriären i mitten är ett semipermeabelt membran som har tillräckligt stora porer för att släppa igenom den små blå partiklarna.

Koncentrationen av lösta partiklar är högre på den vänstra sidan om membranet. Det är troligast att fler av de lösta partiklarna kommer att röra sig från den vänstra sidan av det semipermeabla membranet till den högra än tvärtom. Anledningen är att det finns fler partiklar som kan röra sig åt höger. Det leder till att koncentrationerna utjämnas och så småningom blir lika på båda sidor om membranet.


Nettotransporten blir noll när koncentrationerna är lika

Nettotransporten vid blir noll när koncentrationerna är utjämnade.
Bild: © Svante Åberg

Eftersom molekylrörelserna fortsätter kommer några av molekylerna att röra sig tillbaka till den vänstra sidan om membranet samtidigt som några andra molekyler rör sig till den andra sidan.

Men transporten är lika snabb åt båda håll eftersom koncentrationerna blivit lika på båda sidor. Därför sker ingen nettotransport sedan jämvikt ställt in sig. Man använder benämningen dynamisk jämvikt (dynamiskt eqilibrium) när en jämvikt ställt in sig trots att reaktioner fortfarande sker. Koncentrationerna av partiklar är stabila.

Rent teoretiskt är det inte omöjligt att alla lösta partiklar, av en slump, vid något kort tillfälle skulle befinna sig på den ena sidan om membranet. Detta är dock synnerligen osannolikt.


Koncentrationsgradienten bestämmer diffusionshastigheten

Ju brantare lutningen hos koncentrationskurvan är, desto snabbare sker diffusionen genom membranet.
Bild: Svante Åberg

Diffusionshastigheten är proportionell mot storleken av koncentrationsgradienten. Därför är koncentrationsgradienten av betydelse.

Med koncentrationsgradient menas hur mycket koncentrationen förändras per längdenhet i en bestämd riktning.

Koncentrationsgradientens storlek inuti membranet är differensen i koncentrationen på ömse sidor av membranet dividerat med membranets tjocklek. Du tunnare membranet är, desto större blir koncentrationsgradienten.

Om membranet dessutom är tunnare, så blir sträckan att vandra kortare. Därför ökar diffusionen genom ett membran mycket snabbt när membranet görs tunnare.

När de lösta partiklarna är för stora får vi osmos

Det semipermeabla membranet släpper igenom de små molekylerna (ex. vatten), men hindrar de stora (ex. socker).
Bild: Svante Åberg

I de fall då difussion sker genom någon form av barriär, som inte släpper igenom alla typer av ämnen, talar man om osmos.

Effekten av att det finns lösta partiklar som inte kan passera genom membranet är att förändra koncentrationen av de partiklar som faktiskt kan passera. Man kan säga att det lösta ämnet späder ut lösningsmedlet.

Det leder till en koncentrationsgradient över membranet där det rena lösningsmedlet utan löst ämne har högre koncentration. Då sker diffusion av lösningsmedel från sidan utan löst ämne till den sida där det finns löst ämne.

Det räcker att det finns en koncentrationsskillnad mellan sidorna för att få en koncentrationsgradient. Det behöver alltså inte vara rent lösningsmedel på ena sidan.

Resultatet av osmosen är att koncentrationerna utjämnas.

Osmos är särskilt intressant när det gäller levande organismer då våra cellmembran är genomsläppliga för vissa typer av molekyler men inte för andra. Detta skyddar till viss del cellerna från att invaderas av oönskade ämnen.

Jämvikt

Jämvikt bygger på att en reaktion sker i framriktningen och tillbakariktningen samtidigt och att reaktionshastigheterna är lika stora. Det innebär att det totalt sett inte sker någon förändring, trots att reaktionerna hela tiden pågår. Man säger att jämvikten är dynamisk därför att det är en pågående process.

Med reaktionsformel så ser jämvikten mellan ämne A och ämne B ut på följande sätt:

A ⇄ B

En liknelse för att förklara jämvikten

Föreställ dig att en hink med vatten står under kranen som är öppen. Men det finns ett hål i hinkens botten där vatten rinner ut. De reaktioner vi tittar på är tillförsel av vatten till hinken (framriktningen) och bortförsel av vatten från hinken (tillbakariktningen).

Vatten utanför hinken motsvarar A i jämvikten ovan, och vatten inuti hinken motsvarar B. Vi kan då skriva jämvikten med ord på följande sätt:

vatten utanför hinken (A) ⇄ vatten inuti hinken (B)

Vi öppnar kranen

Innan vi öppnar kranen, så är hinken tom, men så snart vi öppnar kranen börjar hinken fyllas med vatten. I början är vattennivån låg och det rinner inte ut vatten genom hålet lika snabbt som vatten fylls på från kranen. Det innebär att vattennivån i hinken ökar. Jämvikten har inte ännu ställt in sig.


Vid det högre vattenflödet från kranen till hinken (höger bild), så stabiliseras vattenytan på en högre nivå.
Bild: Svante Åberg

Men ju högre vattennivån blir, desto snabbare rinner vatten ut genom hålet. Till slut rinner vatten ut lika snabbt som det fylls på.

Detta tillstånd får man vid en bestämd vattennivå i hinken som svarar mot ett visst tryck hos vattnet. Denna nivå är jämviktsnivån.

Trots att vi har pågående reaktion i framriktningen (A → B) och samtidigt i tillbakariktningen (A ← B), så är vattennivån stabil. Detta stabila tillstånd, trots pågående reaktioner, kallas dynamisk jämvikt.

Vi ändrar flödet

Om vi sedan skulle ändra kranen så att det tillförs vatten snabbare eller långsammare, så skulle vattennivån i hinken börja förändras igen. Så småningom skulle en ny jämvikt ställa in sig på en annan vattennivå.

Ett högt flöde från kranen ger en hög jämviktsnivå i hinken, ett lågt flöde ger en låg jämviktsnivå.

Exempel på jämvikter

Esterjämvikten

Man kan tillverka väldoftande luktämnen genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra → ester + vatten

Från början finns ingen ester och inget vatten, bara alkohol och syra. Reaktionen sker därför bara åt höger. Men när det väl har bildats en del ester och vatten, så börjar det ske en reaktion åt andra hållet så att alkohol och syra återbildas. Men tillbakareaktionen är långsam i början eftersom det finns så lite ester och vatten som kan reagera.

alkohol + syra ← ester + vatten (långsam i början)

Med tiden bildas det alltmera ester och vatten, vilket gör att tillbakareaktionen blir snabbare. Samtidigt minskar mängden alkohol och vatten, vilket gör att framåtreaktionen blir långsammare. Till slut är tillbakareaktionen lika snabb som framåtreaktionen. Då har dynamisk jämvikt ställt in sig.

alkohol + syra ⇄ ester + vatten

Löslighetsjämvikt

Salter är lösliga i vatten, men bara upp till en viss gräns. När saltlösningen blivit mättad, så är systemet i jämvikt. Exempel på ett salt är natriumklorid, det vill säga vanligt koksalt.

NaCl(s) ⇄ Na+ + Cl

En sak som är speciell i detta fall är att koncentrationen av salt i fast form är konstant, oberoende av hur mycket fast salt vi har. Det innebär att reaktionen i framriktningen alltid är lika snabb.

Däremot varierar koncentrationen av natriumjoner och kloridjoner. I början finns inga natrium- och kloridjoner i lösning. Då sker bara reaktionen i framriktningen.

Men ju mer natrium- och kloridjoner som går i lösning, desto snabbare blir tillbakareaktionen. Till slut faller koksalt ut lika snabbt som det går i lösning. Då har vi fått dynamisk jämvikt.

Jämviktsläget

Massverkans lag

Massverkans lag anger att när ämnen reagerar med varandra, så är reaktionshastigheten proportionell mot koncentrationen av de partiklar som reagerar. Det är en statistisk effekt som kommer av att en kemisk reaktion bara kommer till stånd om de reagerande partiklarna kolliderar. Om koncentrationen av partiklar är hög, så blir det många kollisioner per sekund. Då är det också fler partiklar som reagerar varje sekund – reaktionshastigheten blir hög.

I en jämvikt sker reaktion både i framriktningen (åt höger) och i tillbakariktningen (åt vänster). Jämviktsläget beror på reaktionshastigheten åt höger i jämförelse med den åt vänster. Jämvikt fås när hastigheten åt höger och åt vänster är lika. Det betyder att lika mycket bildas som det som förbrukas. Nettoförändringen blir noll.

Man har så kallad dynamisk jämvikt. Ordet dynamisk anger att reaktionerna hela tiden pågår. Men i och med att inga nettoförändringar sker, så har man jämvikt.

Sannolikheten för kemisk reaktion vid en kollision

Det är emellertid inte varje kollision som leder till kemisk reaktion. Kemisk reaktion innebär att bindningar bryts i den gamla partikeln och nya skapas som ger ett nytt ämne. Men oftast studsar partiklarna bort från varandra utan att reagera. Om partiklarna inte är rätt orienterade i förhållande till varandra vid kollisionen, så sker ingen kemisk reaktion.

Aktiveringsenergin måste övervinnas för att reaktion ska ske

Inte heller sker någon reaktion om kollisionsenergin är för liten. Rörelseenergin i kollisionen måste övervinna den energitröskel det innebär att bryta de gamla bindningarna. Inte förrän dessa är brutna kan nya bildas. Denna energitröskel benämns aktiveringsenergi.

När energinivåerna skiljer, så påverkar det jämviktsläget

Om ämnena på ena sidan i reaktionsformeln är energirikare än ämnena på andra sidan, så är energitröskeln olika stor för reaktionen åt höger respektive åt vänster. (Figur som visar ett sådant exempel ska infogas här.)

När framåt- och bakåtreaktionen sker olika lätt, så påverkar det jämviktsläget. Om till exempel framåtreaktionen är kraftigt exoterm, så är energitröskeln i framriktningen låg och en stor andel av kollisionerna leder till reaktion. Men då blir samtidigt energitröskeln för reaktion i bakåtriktningen hög. Det krävs en hög koncentration av partiklar i högerledet av jämviktsreaktionen för att reaktionshastigheten åt vänster ska bli lika hög som den åt höger. En starkt exoterm jämvikt brukar därför vara starkt förskjuten åt höger.

Jämviktskonstanten är ett mått på jämviktsläget

För att få ett mått på jämviktslägen behöver man få en siffra på hur den aktuella kemiska reaktionen ställer in sig. Värdet hos jämviktskonstanten K återspeglar jämviktsläget. Ju större konstanten är, desto mer förskjuten åt höger är jämvikten. Exempel på en jämvikt som är väldigt starkt förskjuten åt höger är reaktionen mellan vätgas och syrgas då vatten bildas:

2 H2 + O2 ⇄ 2 H2O, K = 3,2·1081 M–1

En jämviktskonstant som är nära noll tyder på en jämvikts som är starkt förskjuten åt vänster. Exempel på en jämvikt som är starkt förskjuten åt vänster är vattnets autoprotolys:

2 H2O ⇄ H+ + OH, K = 1,0·10–14 M2 (lösningsmedlet vatten enhetslöst)

Exempel på en jämvikt som inte är så starkt förskjuten åt någotdera hållet är esterjämvikten:

alkohol + syra ⇄ ester + vatten, K ≈ 4

Koldioxid

Egenskaper

Koldioxid är en luktlös gas, men vid höga koncentrationer kan man få en sur smak i munnen som beror på att gasen löser sig i saliven och bildar kolsyra. Inandning av koldioxid i onormalt höga halter kan leda till huvudvärk, illamående och kräkningar. Är halten tillräckligt hög kan inandning leda till medvetslöshet och till och med döden.

Koldioxiden är med sin molmassa 44 g/mol tyngre än syrgas (32 g/mol) och kvävgas (28 g/mol). Därför sjunker koldioxiden ner mot marken om den släpps ut. Med tiden diffunderar koldioxiden och blandar sig med luften till dess halten är lika överallt, men det tar ett tag.

Koldioxid underhåller inte förbränning. Den kväver därför eld. Så kallade kolsyresläckare innehåller koldioxid under högt tryck. De fungerar genom att koldioxiden tränger undan luftens syre så att elden slocknar.

Kolsyresnö och torris är koldioxidid fast form

Kolsyresnö och torris är en benämning på frusen koldioxid. Torris är kolsyresnö som har komprimerats så att den blivit kompakt.

En bit torris ångar och ryker i rumstemperatur när koldioxiden sublimerar, dvs. övergår direkt från fast till gasform. Kylan gör att luftens fuktighet kondenserar så att synlig dimma bildas.

Man kan lägga ner bitar av torris i bål (som man dricker) för att få en festligt effekt. Torrisen kolsyresätter samtidigt drycken. Var bara försiktig att så att du inte sätter en bit torris i halsen. Den är nämligen mycket kall, - 78,5 °C. Tag aldrig i torris med händerna!

Ett recept för att tillverka dimma är att släppa ned torris i varmt vatten. Vattnet får torrisen att sublimera till gas snabbare, men bildas dimma av vattendroppar.

Kolsyresnö bildas också när man använder en kolsyresläckare. Brandsläckaren innehåller komprimerad koldioxid under högt tryck. När man släpper ut gasen sjunker temperaturen hastigt och så mycket att koldioxiden fryser till kolsyresnö vid –78,5 °C. Förutom att koldioxiden kväver elden så bidrar kyleffekten till att elden minskar i intensitet.

Tillverkning och användning

Koldioxid fås bland annat som biprodukt vid förbränning av kolhaltiga bränslen och vid upphettning av naturliga karbonat, särskilt vid "kalkbränning" (upphettning av kalciumkarbonat, kalksten). Kalkbränningen ger bränd kalk, (kalciumoxid, CaO):

CaCO3(aq) CaO(s) + CO2(g)
kalciumkarbonat kalciumoxid koldioxid

Den bildade koldioxiden renas och kondenseras, och kan också överföras till kolsyresnö som i sin tur kan pressas till torris.

Gasformig koldioxid används vid framställning av kolsyrade drycker och eldsläckningsanläggningar, medan torris främst används till kylning, till exempel när glass ska transporteras.

En mycket speciell tillämpning är koldioxidlasrar där koldioxiden fungerar som medium för ljusstrålen när den fås att svänga i fas. Koldioxidlasern producerar ljus i det infraröda området vid våglängderna 9,4 och 10,6 mikrometer (μm)

Ett oorganiskt ämne med stor biologisk betydelse

Koldioxiden ingår i kolets kretslopp i naturen. Alla organismer som förbrukar syre i cellandningen producerar koldioxid. Människan andas, liksom djuren, in luftens syre som transporteras ut i kroppen via blodet till cellerna där förbränningen av maten sker. Maten bryts ned till bland annat koldioxid och vatten. Blodet transporterar koldioxiden tillbaka till lungorna och vi andas sedan ut den.

C-föreningar + O2(g) H2O + CO2(g) + energi
kolföreningar syrgas vatten koldioxid energi

I växterna sker den motsatta processen, att bladen tar upp koldioxid som med hjälp av energin från solljuset reagerar med vatten. Då bildas bland annat sockerarter. Restprodukt vid fotosyntesen är syrgas som avges via bladens klyvöppningar.

H2O + CO2(g) + energi C-föreningar + O2(g)
vatten koldioxid energi kolföreningar syrgas

På detta sätt vandrar kolet i ett kretslopp mellan växter och djur. Kolet är i form av koldioxid när det finns i luften. Men i organismerna binds kolet upp i organiska föreningar såsom stärkelse, socker, fetter och proteiner. Koldioxid betecknas som ett oorganiskt ämne, dvs. ett ämne som inte är biologiskt. Men kolet från koldioxiden som binds i organiska föreningar som har en biologisk funktion.

Ökande koldioxidhalter i atmosfären försurar haven

Genom industrialiseringen, och då speciellt förbränningen av fossila bränslen, har sura gaser bidragit till försurning. Speciellt koldioxiden har blivit ett problem. Den naturliga mängden kol i kolets kretslopp har fyllts på med kol från de fossila bränslena som har legat i tryggt förvar i jorden. Koldioxidhalten i atmosfären har ökat dramatiskt.

Försurningen sker när koldioxid som löser sig i vattnet bildar kolsyra. Kolsyra får kalken i korallrev och i djur med kalkskelett att lösas upp. Effekterna är så stora att hela ekosystem är på väg att slås ut.

Ökande koldioxidhalter i atmosfären orsakar global uppvärmning

Eftersom koldioxid är en så kallad växthusgas, så orsakar ökningen av koldioxid i atmosfären en förstärkt växthuseffekt. Beräkningar växthuseffekten måste ta hänsyn till många komplicerade samband. Därför har forskarna av ren försiktighet undvikt att komma med kategoriska påstående om hur kraftig effekten är. Men när nu växthuseffekten har slagit till på allvar kan vi se att den är långt kraftigare än förväntat. Det finns inte heller någon tvekan om att den globala uppvärmningen till allra största delen är orsakad av människans verksamhet som ökat på koldioxidhalten i atmosfären.

Koldioxid i form av vätekarbonat stabiliserar pH

Medan koldioxiden transporteras av blodet reagerar det med vattnet som finns i blodet och bildar kolsyra, vätekarbonat och karbonat. Nästan all koldioxid är i form av vätekarbonat i blodet. Det beror på att blodets pH ligger på cirka 7,4. Vätekarbonatet hjälper till att stabilisera blodets pH så att det inte ska variera alltför mycket. Detta är viktigt för att vi ska må bra. Kroppens reglering och vätekarbonatets pH-buffrande verkan gör att blodet pH håller sig mellan 7,35 och 7,45.

Koldioxiden har också en motsvarande bufferteffekt på pH i naturen. Ett problem är dock att i första reaktionsstegen när koldioxiden reagerar med vatten, så bildas kolsyra. Kolsyran sänker pH. Det är först när en del av kolsyran förbrukas av bas, till exempel i reaktionen med kalk, som det pH-buffrande vätekarbonatet bildas. Ökande koldioxidhalter i luften bidrar därför till försurning av hav och vattendrag.

Koldioxid deponerad som mineraler

På planeterna Venus och Mars är koldioxid den vanligaste gasen. I torr luft på planeten Jorden är koldioxid den fjärde vanligaste gasen näst efter kväve, syre och argon. När de stora oceanerna bildades flyttades en stor del av koldioxiden från den tidiga atmosfären till vattnet där den löstes upp. Nu återfinns stora delar av den tidigare koldioxiden som karbonater i berggrunden.

Av allt kol som finns på jorden är bara en mycket liten del som fri koldioxidgas i atmosfären. Koldioxiden i luften står i jämvikt med koldioxid i vattenlösning. Koldioxiden i vattnet reagerar till kolsyra som reagerar vidare till vätekarbonat (HCO3) och karbonat (CO32–). Karbonatjonerna bildar svårlösliga salter tillsammans med till exempel kalciumjoner (Ca2+) och faller ut som fasta mineraler. Det mesta kolet är bundet i berggrunden som karbonater, men också som en försvinnande liten andel fossil stenkol, brunkol, olja och naturgas. Dessutom har vi kol som är bundet som biomassa i ekosystemen, inklusive förmultnande material i marken.

Fördelningen är följande:

PlaceringVikt kolAndel
atmosfären7,5·1011 ton0.001%
ekosystem2,1·1012 ton0.002%
haven3,8·1013 ton0.038%
berggrunden1,0·1017 ton99.959%

Koldioxid som superkritisk vätska

Vid tillräckligt högt tryck och temperatur övergår gaser till att bli superkritiska vätskor. Tillståndet är något som kan betecknas både som gas och vätska samtidigt. Molekylerna är rörliga nästan som i en gas, dvs diffunderar snabbt. Samtidigt är förmågan att lösa ämnen god, som i en vätska. Dessa egenskaper är till god nytta vid superkritisk extraktion. För koldioxid inträffar det superkritiska tillståndet vid 73,76 bars tryck och en temperatur av endast 31,04 °C. Det gör koldioxiden mycket lämpad för användning som superkritisk vätska.

Natriumvätekarbonat

Natriumvätekarbonat kallas också natriumbikarbonat, eller helt enkelt bikarbonat.

Vätekarbonatet i jämvikt med koldioxid och karbonater finns överallt i naturen

Vätekarbonat finns nästan överallt i naturen eftersom det är nära kopplat till koldioxid, som ju finns i atmosfären. Koldioxiden löser sig i vatten och bildar då kolsyra. Kolsyran står sedan i syra-basjämvikt med vätekarbonat.

Vätekarbonatet ingår i kolets kretslopp på grund av jämvikten med kolsyra. Vid matsmältningen bryts maten ned till bland annat koldioxid och vatten. Koldioxiden förs bort med blodet till lungorna. Vi andas sedan ut koldioxiden.

Växterna gör tvärtom. De tar upp koldioxid via sina klyvöppningar och koldioxiden löser sig i cellvätskorna. Där står koldioxiden också i jämvikt med vätekarbonat. I fotosyntesen binds koldioxiden/vätekarbonatet och tillsammans med vatten och solenergi bildas sockerarter som bygger upp växterna.

Kalksten är en bergart av mineralen kalciumkarbonat. Kalciumkarbonat är svårlöslig, men kan reagera med surt vatten. Surt regn får kalkstenen att lösas upp. Då bildas vätekarbonat. I havet finns stora mängder koksalt, som ju innehåller natriumjoner. Man kan därför säga att upplöst kalksten som hamnar i havet finns där i form av natriumvätekarbonat.

Vätekarbonat bildar koldioxid tillsammans med syra

Om man har karbonat i någon form, vare sig det är vätekarbonat eller karbonat, så får man koldioxidutveckling om man tillsätter syra. Följande reaktion sker:

H+ + HCO3 → H2CO3(aq) → CO2(g) + H2O(l)

från vätekarbonat, respektive

2 H+ + CO32– → H2CO3(aq) → CO2(g) + H2O(l)

från karbonat.

Detta är ett sätt att testa om ett salt innehåller vätekarbonat eller karbonat.

Vätekarbonat sönderfaller vid 200 C

Förutom att reaktionen med syra kan ge koldioxidutveckling, så kan även vätekarbonat sönderdelas av hög värme. Vid temperaturer över 200 C sker följande:

2 NaHCO3(s) → Na2CO3(s) + H2O(g) + CO2(g)

Man får även här koldioxidutveckling. Eftersom natriumkarbonat är ett stabilt ämne, så avges bara en koldioxid av två molekyler vätekarbonat.

Men om temperaturen skulle vara så hög som över 850 C, så fortsätter sönderfallet till natriumoxid, det vill säga även den andra koldioxiden avges:

Na2CO3 → Na2O(s) + CO2(g)

Bikarbonat används vid bakning

Bikarbonat (= natriumvätekarbonat) används som hävningsmedel vid bakning. Bikarbonat ingår också i bakpulver tillsammans med sura ämnen som kan få vätekarbonatet att avge koldioxid. Det är koldioxidgasen som får bakverket att bli poröst.

I recept där bikarbonat används behövs något surt som gör att vätekarbonatet kan bilda koldioxid, till exempel fil. Restprodukten natriumkarbonat är också lite bitter och tvålaktig i smaken. Därför behövs sura ingredienser i bakverket.

Övrig användning av vätekarbonat

Natriumvätekarbonat finns i brustabletter, oftast tillsammans med citronsyra. När tabletten läggs i vatten löses vätekarbonat och syra upp, så att de kan komma i kontakt med varandra och reagera. Resultatet blir kraftig koldioxidutveckling.

En bisarr och rätt grym metod att bli kvitt kackerlackor är att mata dem med bikarbonat. I kackerlackans mage utvecklas koldioxid som får insekten att svälla upp och spricka.

Natriumvätekarbonat sägs också kunna används för att bekämpa svamptillväxt.

Allmänt gäller att ämnen som används för rengöring av icke-feta fläckar är basiska. Även natriumvätekarbonat kan användas för fläckborttagning, till exempel av rostfläckar.

Salt med både sura och basiska egenskaper

Natriumvätekarbonat är ett salt med övervägande basiska egenskaper. Saltet är amfotert, dvs. kan fungera både som syra och som bas. Vätekarbonatet fungerar som bas genom att ta upp en vätejon kring pH 6,35 övergår då till kolsyra. Det kan också fungera som syra genom att avge en vätejon kring pH 10,33 och övergå till karbonat.

kolsyra pKa1,app = 6,35 vätekarbonat pKa2 = 10,33 karbonat
H2CO3(aq) H+ + HCO3 2 H+ + CO32–

Notera: Värdet pKa1,app =6,35 ovan är ett apparent pKa-värde för kolsyra som egentligen avser summan av kolsyra H2CO3(aq) och löst koldioxid CO2(aq) i jämvikt med varandra i lösningen. Mängden löst koldioxid är betydligt större än den faktiska mängden kolsyra.

Syra-basegenskaperna gör vätekarbonat till en pH-buffert

En pH-buffert fungerar så att den förbrukar tillsatt syra eller bas och stabiliserar på så vis pH-värdet. Syra-basreaktionerna för vätekarbonatet sker kring pKa-värdena pH 6,35±1 och pH 10,33±1. Det är kring dessa värden som den buffrande förmågan finns.

Vätekarbonat finns till exempel i blodet, där pH ligger mellan 7,35 och 7,45, det vill säga aningen åt det basiska hållet. Vid pH 7,4 är jämvikten 92 % vätekarbonat och 8 % kolsyra (och 0 % karbonat).

Vätekarbonat buffrar också naturliga vatten. Koldioxid som finns i atmosfären och som bildas vid nedbrytning av organiskt material kan lösa sig i vattnet. Kolsyran står då i kemisk jämvikt med vätekarbonat. Dessutom finns mineraler som är karbonater, främst kalksten. Kalkstenen kan lösas upp av syror och bilda vätekarbonat. Allt detta tillsammans ger an blandning av kolsyra, vätekarbonat och karbonat där vätekarbonatet är den viktigaste lösta jonen som buffrar pH.

Vätekarbonat finns i tabletter mot sur mage. Den pH-buffrande förmågan gör att en alltför sur mage motverkas.

Man använder också vätekarbonat i pH-buffertar på kemilab. Då används den oftast tillsammans med andra amfotera salter för att utöka den buffrande förmågan över ett större pH-intervall, inte bara kring pH 6,35 och 10,33.

Ättiksyra

Ättiksyra är en organisk syra med två kolatomer och har formeln CH3COOH. Ibland skrivs på en förkortad form HAc, där Ac representerar acetatjonen CH3COO. Ättiksyran kallas också etansyra. Som alla organiska syror har molekylen den karaktäristiska gruppen –COOH.

Syran är svag med pKa = 4,76, vilket är det pH då syran har avgett 50 % av sina vätejoner. Även ganska koncentrerade lösningar av ättiksyra har därför ett pH-värde som måttligt lågt.

Ättiksyra bildas när etanol oxideras, till exempel om vin får stå öppet och utsättas för luftens syre. Vinäger bildas på detta sätt och är en gammal ingrediens i smaksättning av rätter.

Ättiksyra tillverkas vanligen syntetiskt genom reaktion mellan metanol och kolmonoxid, men kan också tillverkas med bakteriell fermentering, dvs. på biologisk väg.

En hel del ättiksyra används i hemmen för inläggningar och smaksättning, men större delen av ättiksyran som produceras används i den kemiska industrin för att tillverka estrar, speciellt vinylacetat-monomerer som sedan polymeriseras till plasten polyvinylacetat (PVA).

Ättiksyra i olika koncentrationer för olika ändamål

Ättika som säljs har olika koncentration beroende på vad den ska användas till. För olika recept kan man också späda ättikan till lämplig koncentration.

Isättika

Isättika är 100 % ättiksyra, i varje fall över 90 %. Isättika är frätande och luktar starkt. Den ska hanteras med försiktighet.

Namnet isättika kommer av att smältpunkten (= fryspunkten) för ren ättiksyra är 16,6 C, alltså strax under rumstemperatur.

Isättika fungerar som lösningsmedel för en del plaster. Till exempel brukade man skarva filmer på den tiden som filmerna byggde på ljuskänsliga silversalter på en celluloidbas. Celluloiden löstes upp av isättikan. Filmändarna lades samman och fick torka. Celluloiden smälte samman i en kemiskt homogen skarv.

Vanlig ättika

Vanlig ättika av märket Perstorp är 24 %-ig. Det finns dock andra fabrikat som säljer 12 % ättika. Ättikan hanteras med viss försiktighet. Den har en stark lukt. Ofta späder man ättika enligt anvisningarna i matrecepten.

Ättika är bakteriedödande. Till exempel kan man i samband med avfrostning av kylskåpet passa på att skölja av det invändigt med en lösning av lika delar ättika och vatten. Men se till att skölja efter med rent vatten så att resterna av ättika inte finns kvar och kanske påverkar plasten.

Ättika kan också användas för att ta bort kalkavlagringar på diskbänken eller i kaffebryggaren.

Ett recept för att avkalka kaffebryggaren är att blanda 1 dl 24 % ättika med 6 dl vatten i kaffebryggaren. Sätt på bryggaren så att hälften av lösningen passerar. Stäng av bryggaren i 10 minuter för att ättiksyran ska få verka. Sätt på den igen och låt resten av lösningen passera. Brygg därefter 3-4 omgångar med rent vatten.


Ättiksyra ger snabbt ärg av kopparacetat på en kopparslant.
Bild: Svante Åberg

Ättiksyra har en förmåga att snabbt ge grön ärg på koppar. Det räcker med ångorna från ättikan för att kopparen ska ärga inom några timmar. Föreningen som bildas är kopparacetat.

Ättiksyrans förmåga att korrodera koppar, men även andra metaller, gör att den bör användas med försiktighet i kontakt med till exempel elektronisk utrustning. Glöm inte att även ångorna av ättiksyra kan vara korrosiva.

Ättiksprit

Ättiksprit är 12 %. Den fungerar som vanlig ättika, men är hälften så koncentrerad.

Den kan blandas till av 1 del 24 % ättika + 1 del vatten.

Ogräsättika

Ogräsättika är ofta 12 %.

Om du inte vill köpa särskild ogräsättika, så kan du själv blanda till ogräsättika av 1 del 24 % ättika + 1 del vatten.

Ättika dödar växter och kan användas som ogräsmedel. Spruta ättiklösningen på ogräset eller vattna med den, så dör ogräset inom 2-3 dagar. Eftersom ättiksyra avdunstar, så ska man inte använda det i växthus eftersom ångorna sprider sig även till växter man vill ha kvar.

Använd inte ogräsättika till matlagning eftersom du inte kan vara säker på att den inte innehåller andra tillsatser som ska döda ogräset.

Inläggningsättika

Inläggningsättika är vanligtvis 6 %.

Den kan blandas till av 1 del 24 % ättika + 3 delar vatten.

Matättika

Matättika är vanligtvis 3 %.

Den kan blandas till av 1 del 24 % ättika + 7 delar vatten.

Vinäger

Vinäger innehåller ättiksyra, men är inte bara ättika. Vinägern innehåller dessutom smakämnen från det vin eller den cider som den är framställd av.

Ättiksyra som lösningsmedel

Sammantaget har ättiksyran både polära och opolära egenskaper. Den kan därför lösa polära ämnen, såsom alkoholer, sockerarter och salter, men är även löslig i opolära lösningsmedel såsom kloroform och hexan.

Polära egenskaper

Ättiksyrans karboxylgrupp –COOH ger polära egenskaper, särskilt när syran dissocieras till acetat, Ac. Ättiksyran är en svag syra och i vattenlösning har vi följande jämvikt:

HAc + H2O ⇄ H3O+ + Ac

Jämvikten i vattenlösning förskjuts åt höger när ättiksyralösningen är utspädd. Då förekommer mera av syran i form av den korresponderande basen acetat, som är en negativ jon.

Opolära egenskaper

I en koncentrerad lösning är jämvikten förskjuten åt vänster, det vill säga syraformen, som är en oladdad molekyl. I sin syraform är de polära egenskaperna mindre framträdande. Till det bidrar kolvätegruppen –CH3.

För ättiksyra gäller att Ka = 1,75·10–5 M. Med lite räknande kan man få fram att för en lösning av 0,1 M ättiksyra så är bara 1,3% av ättiksyramolekylerna protolyserade.

Tunnskiktskromatografi

I tunnskiktskromatografi är det viktigt att hitta en eluent med rätt polaritet för att kunna ge rätt löslighet åt de provfläckar som ska vandra på tunnskiktsplattan. Ofta väljer man en blandning av kolväte + ester + organiskt syra. Ett typiskt recept kan innehålla hexan + etylacetat + ättiksyra + vatten.

Litteratur

  1. Raymond Cang, General chemistry, 2006, McGraw-Hill, Dubuque, Iowa.
  2. Bo Berghult och Ann Elfström Broo, Vattnets kemi för människan och miljön, 1998, Studentlitteratur, Lund.
  3. Natriumbikarbonat , Shenet
    http://www.shenet.se/ravaror/natriumbikarbonat.html (2006-05-18)
  4. Ättiksyra och ättika, Shenet
    http://www.shenet.se/ravaror/attika.html (2006-05-18)
  5. Om koldioxid och karbonater, Kemiskafferiet, Notnavet
    http://www.skolutveckling.se/notnavet/kemi/kemiskafferiet/modul%207/
    Modul%207%20Kemiteori%20Om%20koldioxid%20och%20karbonater.pdf (2006-05-18)
  6. Karbonathårdhet, Nordiska Ciklidsällskapet
    http://www.ciklid.se/faq_artikel_visa.asp?NR=671 (2006-06-02)
  7. Magsafts-reflux (sura uppstötningar, halsbränna och katarr i matstrupen), netdoktor.se
    http://netdoktor.passagen.se/default.ns?lngItemID=3377 (2006-06-02)
  8. 14. Hur fort och hur mycket?, Liber
    http://www2.liber.se/gy/prodstod/kemiboken/kemiboken_b_100p/kap14.pdf (2006-05-18)
  9. Allmänna gaslagen, Skolkemi
    http://school.chem.umu.se/Experiment/showFact.php?factId=45 (2006-05-17)
  10. Huvudsida, Wikipedia
    http://sv.wikipedia.org/wiki/Huvudsida (2006-05-17)
    • Ideala gaslagen
      http://sv.wikipedia.org/wiki/Ideala_gaslagen (2006-05-17)
    • Tryck
      http://sv.wikipedia.org/wiki/Tryck (2006-05-17)
  11. Portal:Science, Wikipedia
    http://en.wikipedia.org/wiki/Portal:Science (2006-05-17)
    • Gas laws
      http://en.wikipedia.org/wiki/Gas_laws (2006-05-17)
    • Ideal gas
      http://en.wikipedia.org/wiki/Ideal_gas (2006-05-17)
    • Boyle's law
      http://en.wikipedia.org/wiki/Boyle%27s_law (2006-05-17)
    • Dalton's law
      http://en.wikipedia.org/wiki/Dalton%27s_law (2006-05-17)
    • Kinetic theory of gases
      http://en.wikipedia.org/wiki/Kinetic_theory_of_gases (2006-05-17)
    • Latex
      http://en.wikipedia.org/wiki/Latex (2006-06-01)
  12. Kinetic Molecular Theory and Gas Laws, John L. Park
    http://dbhs.wvusd.k12.ca.us/webdocs/GasLaw/KMT-Gas-Laws.html (2006-05-02)
  13. Gas Laws, Betha Chemistry Tutorial, Ohio State University
    http://www.chemistry.ohio-state.edu/betha/nealGasLaw/ (2006-05-02)
  14. Thall's History of Gas Laws, Edwin Thall, Florida Community College
    http://mooni.fccj.org/~ethall/gaslaw/gaslaw.htm (2006-05-02)
  15. Gases, Chemtutor
    http://www.chemtutor.com/gases.htm (2006-05-02)
  16. Ideal Gas Law, HyperPhysics, Georgia State University
    http://hyperphysics.phy-astr.gsu.edu/HBASE/kinetic/idegas.html (2006-05-02)
  17. The Ideal Gas Laws, Ralph H. Logan
    http://members.aol.com/profchm/gas_laws.html (2006-05-02)
  18. Gas Laws, David N. Blauch, Davidson College
    http://www.chm.davidson.edu/ChemistryApplets/index.html#GasLaws (2006-05-02)
    • Boyle's Law
      http://www.chm.davidson.edu/ChemistryApplets/GasLaws/BoylesLaw.html (2006-05-02)
    • Boyle's Law Calculations
      http://www.chm.davidson.edu/ChemistryApplets/GasLaws/BoylesLawCalc.html (2006-05-02)
  19. Animated Gas Lab, NASA
    http://www.grc.nasa.gov/WWW/K-12/airplane/Animation/frglab.html (2006-05-02)
  20. Gas Law Program, Michael Abraham & John Gelder
    http://intro.chem.okstate.edu/1314F00/Laboratory/GLP.htm (2006-05-02)
  21. Gas Laws: The Ideal Gas Law, Chemistry 124 Laboratory, CalPoly
    http://chemweb.calpoly.edu/chem/124/Labs/GasLaws/GasLawsConcept.html (2006-05-02)
  22. Molecules in Motion, University of California
    http://mc2.cchem.berkeley.edu/Java/molecules/index.html (2006-05-16)
  23. Chemistry in the Toy Store - Recipes, David A. Katz
    http://www.chymist.com/Toy%20Store%20Recipes.pdf (2006-06-01)
  24. Education the World About Balloons and Balloon Art, BalloonHQ.com
    http://www.balloonhq.com/index.html (2006-06-01)
  25. Kinetic Theory, Ask A Scientist
    http://www.newton.dep.anl.gov/askasci/gen99/gen99870.htm (2006-06-01)
  26. Why is my carbon dioxide effusing too fast?, John Christie, La Trobe University, Australia
    http://www.madsci.org/posts/archives/may98/895552329.Ch.r.html (2007-05-09)

Fler experiment


fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan

jämvikt
Anden i flaskan
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Avdunstning och temperatur
Bestämning av antalet kristallvatten i kopparsulfat
Brus-raketen
Den frysande bägaren
Den omöjliga tvålen - den är preparerad!
Flaskor mun mot mun
Framställ väldoftande luktämnen
Fryspunktsnedsättning
Färgämnen i M&M
Försvinnande bläck
Gasvolym och temperatur
Gummi och lösningsmedel
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur smakar salmiak?
Innehåller koksaltet jod?
Kemi i en brustablett
Kemi i en plastpåse
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Luftfuktighet och rostbildning
Löslighet och pH - En extraktion
Maskrosen som krullar sig
Massverkans lag och trijodidjämvikten
Molnet i flaskan
När flyter potatisen?
Osmos i potatis
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Principen för dynamisk jämvikt
Reaktionshastighet med permanganat
Saltat islyft
Superabsorbenter i blöjor
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför äter vi Samarin?
Åka hiss
Ägget i flaskan

syror och baser
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Badbomber
Brus-raketen
Den tunga koldioxiden
En märklig planta
Flaskor mun mot mun
Försvinnande bläck
Göra lim av kasein
Höna med gummiben?
Indikatorpärlor
Kemi i en plastpåse
Kemiskt snöfall
Löslighet och pH - En extraktion
Mentos-pastiller i kolsyrad läsk
Modellmassa av mjölk
Osmos i ett ägg
Pelargonens färg
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Regnbågens färger med Rödkåls-indikator
Saltkristaller av en aluminiumburk
Surt regn
Syror och baser i konsumentprodukter
Tag bort rostfläcken med det ämne som gör rabarber sura
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Växtfärga med rödbetor enligt receptet från Västerbotten