Gasvolym och temperatur

Tillhör kategori: fysikalisk kemi, gaser, jämvikt, urval reviderat experiment

Författare: Svante Åberg   Medverkande: Karin Thorell

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Tid för förberedelse: 10 minuter

Tid för genomförande: 30 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Utföres med normal varsamhet

Svårighetsgrad: Kräver viss labvana

Introduktion

Du ska få undersöka vad som händer med en luftfylld, obs! inte tom, flaska om den får vara i olika temperatur med korken stängd. Det som händer går att mäta och det kan passa in i matten också.

Riktlinjer

Experimentet kan göras som demonstration, elev- eller gruppförsök. Yngre elever gör försöket utan mätning av temperatur och volym, men med så stor temperaturskillnad på vattnet att det kan kännas med handen.

Säkerhet

Inga farliga kemikalier förekommer. Varmt vatten innebär alltid en risk att bränna sig. Temperaturen på varmvatten kan variera mycket. För höga temperaturer är det bra att ha verktyg till hands för att kunna trycka ned flaskan och att öppna ventilen med.

Plastflaskorna kan användas igen eller lämnas till återvinning.

Materiel

Förarbete

Om man vill kan man lägga en flaska i kyl eller frys för att utöka temperaturområdet.

Flaskans volym kan eventuell också bestämmas i förväg och ges till eleverna.

Utförande

Om inte flaskornas volym är känd börjar man med att bestämma den. Man fyller en flaska inklusive ventilkorken med vatten av den högsta temperaturen och mäter sen upp det med mätcylindern. Det uppmätta värdet är flaskans volym. Anteckna

  1. Börja med torr och tom flaska (flaskor), sänk ned den i det varmaste vattnet, med ventilen öppen och utan att släppa in vatten. Om vattnet är av hög temperatur, håll ned flaskan med något verktyg.
  2. Mät temperaturen på vattnet.
  3. Håll flaskan i vattnet några minuter och stäng sen ventilen.
  4. Gör iordning vatten av lägre temperatur, så många som önskas.
  5. Sänk ned en flaska i vattnet, upp och ned och med stängd ventil.
  6. Iaktta vad som händer.
  7. Öppna ventilen med flaskan kvar under vatten. Använd verktyg om det är risk att bränna sig.
  8. När flaskan sugit klart kan den uppsugna mängden mätas.
  9. Fortsätt med nya flaskor och andra temperaturer.
  10. Gör ett diagram, där gasvolymen (maxvolymen - den insugna vattenvolymen avsätts mot den absoluta temperaturen.
Flaskan värms till temperaturen i det varma vattenbadet. Därefter stängs ventilen. I det kalla vattenbadet öppnas ventilen så att vatten kan strömma in motsvarande minskningen i luftvolymen.
Bild: © Svante Åberg

Variation

Man börjar från de låga temperaturerna, lägger flaskor med öppen kork i frys eller kyl. När flaskan antagit omgivningens temperatur stängs korken. När flaskorna sen värms upp i vatten kan ventilen öppnas och man ser vad som händer.

Förklaring

I flaskan finns luft, som är en blandning av gaser. När flaskan kyls av minskar luftens volym. När man öppnar ventilen sugs vatten in, motsvarande den minskade volymen. Luftens volym är proportionell mot den absoluta temperaturen. I ett diagram ska det visa sig som en rät linje.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Sambandet volym och temperatur - en av gaslagarna

Vårt experiment visar att volymen är proportionell mot temperaturen uttryckt i Kelvin. Detta är en av de gaslagar som man kom fram till en gång i tiden.

I diagrammet över luftvolym mot temperatur så kan man extrapolera linjen mot låga temperaturer. Skärningspunkten med den horisontella temperaturaxeln ska då teoretiskt hamna på -273 °C, det vill säga absoluta nollpunkten som svarar mot temperaturen 0 Kelvin.

Gaser och faser till vardags

Många företeelser vi ser till vardags kan förklaras med gaslagar eller fasövergångar Några exempel följer här:

Rolig leksak, men farlig


Kärt barn med många namn: "Dippy Bird", "Sipping Bird", "Drinking Bird", "Dunking Bird" eller "Crazy Harry". Se video
Foto: © Svante Åberg

En leksak, numera förbjuden i Sverige, bygger på avdunstning och kondensation. Den kallas bla "Dippy Bird" eller "Sipping Bird" och har två glasbubblor förbundna med ett glasrör. Den nedre bubblan innehåller diklormetan (diklormetan = metylenklorid, CH2Cl2), som är lättflyktigt (har låg kokpunkt ) .Vätskan ömsom avdunstar och kondenserar och fågeln vippar framåt och bakåt. Leksaken förbjöds sedan ett litet barn fått diklormetan på sig.

Fördjupning

Aggregationsform

Faserna och fasövergångarna

Allt som finns runtomkring oss är antingen fast, flytande (vätska) eller i gasform. Dessa former kallas aggregationsformer (aggregation = hopklumpning) eller faser. Atomerna (eller molekylerna) i de olika faserna har olika stort energiinnehåll, olika stor rörelse, och har därför olika volym.

Fast form vid låg temperatur

Vid den absoluta nollpunkten, -273°C = 0 K, finns ingen atomrörelse (K är Kelvin, enheten för absolut temperatur). Alla ämnen är fasta och atomerna ligger regelbundet ordnade så tätt som möjligt. Om temperaturen höjs börjar atomerna vibrera kring sina jämviktslägen. Det fasta ämnet behåller sin form och inom måttliga temperaturintervall och volymen är nästan konstant. Massan är densamma.

Den lilla utvidgning som sker vid värme kan räcka för att lossa en mutter genom att värma på den. Förr var man tvungen att lägga järnvägsräls med mellanrum i skarvarna, för att undvika att rälsen böjde sig under varma dagar, s.k. solkurva. Nutidens järnvägsräls läggs av en formbeständigare metallblandning.

Övergår till vätska (blir flytande) när temperaturen når smältpunkten

När temperaturen stiger ytterligare rubbas atomerna ur sina jämviktslägen. De börjar glida i förhållande till varandra och har blivit en vätska. Fasövergången sker vid smältpunkten. Så länge det finns fast material ligger temperaturen kvar på smältpunkten och stiger inte, även om man tillför värme. Det beror på att all energi går åt till fasövergången. Vätskor ändrar form efter de kärl de förvaras i och har i allmänhet något större volym än samma ämne i fast form (Känt undantag är is, som har större volym än samma mängd vatten pga lucker kristallstruktur hos isen). Mellan molekylerna i vätskan finns sammanhållande krafter. Massan är densamma i vätskan som i den fasta fasen.

Övergår till gas när temperaturen når kokpunkten
En gas fyller upp hela det kärl som den förvaras i.
Bild: © Svante Åberg

Om temperaturen i vätskan höjs, ökar molekylernas rörelseenergi och till slut får några så stor energi att de lämnar den flytande fasen. Övergången från vätska till gas sker när temperaturen nått kokpunkten. Det har bildats en gas. Gasen har ingen bestämd form. Den anpassar sig efter det utrymme den finns i, eftersom molekylerna är helt fria från varandra och färdas rakt fram ända till dess de stöter på någonting, som kan vara kärlets väggar. De krockar också med varandra och byter riktning men dessemellan färdas de "långa" sträckor i absolut tomrum. Gasen har mycket större volym än samma mängd ämne i flytande form och molekylerna i en gas är så långt ifrån varann att de inte påverkar varann. Därför blandas olika gaser lätt. Volymen hos en gas är beroende av temperaturen. Med högre temperatur ökar molekylernas rörelsehastighet, krockarna mellan molekylerna och väggarna blir hårdare. Kollisionerna med väggarna är det vi kallar tryck. Kan väggen utvidgas ökar volymen, i annat fall ökar trycket. Massan är densamma.


Fasövergångarna har bestämda namn. När temperaturen öker sker smältning och förångning (kokning). När temperaturen minsakar sker de motsatta processerna som kallas kondensation och stelning. Observera att smältpunkten och stelningspunkten är exakt samma temperatur. På motsvarande sätt är kokpunkten och kondensationspunkten (för den rena gasen) samma temperatur.

Sublimering


Fasdiagram för koldioxid.
Ben Finney Mark Jacobs: CC0

Fasta ämnen kan övergå direkt till gas utan att först bli vätska. Förutsättningen är att temperatur och tryck befinner sig under ämnets trippelpunkt i ett fasdiagram. Man säger att ämnet sublimerar. Det är en endoterm process, dvs. en process som kräver energitillförsel. Oftast tas energin i form av värme från om givningen, vilket innebär att temperaturen sjunker.

Den motsatta processen när gas övergår direkt till fast form utan att först bilda en vätska kallas desublimering eller deposition. Den processen är exoterm, dvs. avger energi, vanligen i form av värme. Även denna process kan bara ske när tryck och temperatur ligger under ämnets trippelpunkt.

Superkritisk vätska

Över en viss temperatur och visst tryck går det inte längre att urskilja någon fasgräns mellan vätska och gas. Densiteten är hög, praktiskt taget som hos en vätska. Den höga temperaturen får molekylerna att fritt röra sig mellan faserna så att fasgränsen upplöses.

Den superkritiska vätskan har egenskaper utöver det vanliga. Den har förmåga att diffundera genom många fasta material på samma sätt som en gas gör. Samtidigt har den förmåga att lösa ämnen på samma sätt som en vätska gör. Förmågan att fungera som lösningsmedel gör att den i vissa tillämpningar kan ersätta organiska lösningsmedel, till exempel i extraktioner.

Koldioxid är ett ämne som ofta används i tillämpningar med superkritiska vätskor.

Plasma är en fjärde aggregationsform

De tre vanliga aggregationsformerna fast, flytande och gas bestäms av bindningarna mellan atomerna eller molekylerna. Ju varmare det är, desto lösare är atomer och molekyler kopplade till varandra.

Men vid tillräckligt hög temperatur sker någon helt annorlunda, nämligen att elektroner i atomerna slits loss och man får en blandning av positiva atomjoner och fria elektroner. Det är en typ av gasblandning som är elektriskt ledande.

Solen innehåller plasma

Sådan plasma finns i solens atmosfär. Eftersom den är elektriskt ledande, så fångar plasman också upp de starka magnetfälten från solens inre. Vid soleruptioner slungas plasma ut i världsrymden och man kan se hur magnetlinjerna i plasman håller samman plasman i böljande stråk. Dessa utkastningar av laddade partiklar strålar sedan vidare ut från solen och når så småningom jorden. Eftersom rymden är så tom har elektronerna och atomjonerna svårt att hitta varandra igen och återförenas till normala atomer. Därför är partikelstrålningen från solen elektriskt laddad. När partiklarna kommer in i jordens magnetfält tunnlas de ned via magnetfälten vid nord- och sydpolen. När de laddade partiklarna kommer ned till jordatmosfären sker kollisioner med luftens atomer och molekyler. De energier som då utvecklas ger det norr- och sydsken som man kan se mörka, klara vinternätter.

Andra exempel på plasma

I blixtar blir också temperaturen tillräckligt hög för att luftens atomer ska bilda plasma. Det gör att elektriska urladdningar kan ske via blixtens väg mellan molnen och jorden.

En eldslåga innehåller plasma. Faktiskt avger en stearinljuslåga joner till den omgivande luften. Dessa joner kan urladda statisk elektricitet. Om du har en dammvippa av syntetiska fibrer och du har laddat upp den med statisk elektricitet, så kan du observera vad som händer om du närmar den ett brinnande ljus. Redan på håll, så urladdas den statiska elektriciteten. Det beror på att jonerna accelereras till vippan av det elektriska fältet kring den statiskt uppladdade vippan. Detta experiment fungerar bara om luften är tillräckligt torr, annars kan man inte ladda upp vippan. Därför fungerar experimentet bäst vintertid då inomhusluften är torrare.

Konstgjord plasma finns också i lysrör och i plasmaskärmar för datorer.

Fasövergångar och bindningar

Det är lätt att konstatera att smält- och kokpunkter för ämnen kan variera mycket. Vissa ämnen är svåra att tänka sig på annat än ett sätt till vardags. Sten, koksalt och stål är fasta, bensin och alkohol är flytande och luft och gasol är gaser. Många vet också att i extrema fall, t ex i vulkaner, flyter mineralerna (stenen) och att när man svetsar flyter stålet. Det enda ämne man i vardagen möter i alla tre aggregationsformerna är vatten.

Starka bindningar ger höga smält- och kokpunkter

Mineraler och metaller är alltså exempel på ämnen med hög smältpunkt. Att det är så beror på styrkan hos de bindningar som håller ihop ämnena. Alla salter är uppbyggda av joner.

Attraktionskraften mellan positiva och negativa joner, jonbindning, är stark och salter har därför hög smältpunkt.

Mellan de enskilda atomerna i en metall finns metallbindning. Metallbindningen utgörs av de ingående atomernas valenselektroner som bildar ett gemensamt elektronmoln för hela "metallbiten". För att bryta den bindningen krävs mycket energi, vilket ger hög smältpunkt. Ett känt undantag är kvicksilver, en metall som är vätska vid rumstemperatur och alltså har svagare metallbindning.

Även kovalent bindning när atomer delar elektroner kan vara mycket stark. Faktum är att diamant och grafit, kolatomer sammanhållna av kovalenta bindningar har högre smältpunkt än alla metaller.

Svaga bindningar ger låga smält- och kokpunkter

Ämnen uppbyggda av molekyler (eller atomer som i ädelgaserna) har starka kovalenta bindningar mellan atomerna inom molekylerna men svagare bindningar mellan molekylerna. Det gör att smält- och kokpunkten blir relativt låg.

Den svagaste bindningen finns mellan molekyler och atomer är van der Waalsbindning. Den uppkommer pga mycket tillfälligt ojämnt fördelade elektronmoln hos opolära molekyler (atomer). Bindningarna finns både i fast fas och vätskefas. Eftersom bindningen är så svag blir smältpunkten låg, i många fall nedåt eller under -200°C. Den svaga bindningen gör också att skillnaden mellan smält- och kokpunkt blir liten.

Mellan ämnen som är dipoler förekommer dipol-dipolbindning där den positiva polen hos en molekyl attraherar den negativa hos nästa. Smält- och kokpunkten blir låg men högre än med enbart van der Waalsbindning.

För vissa ämnen som är dipoler är smält- och kokpunkten oväntat hög och avståndet mellan smält- och kokpunkten relativt stort. Vatten är ett bra exempel på detta. Det måste bero på starkare bindning än enbart mellan dipoler. De ämnen som har de egenskaperna innehåller alla väte. Vätet är bundet till en fluor-, syre- eller kväveatom, som drar till sig elektronparet i bindningen. Vätet blir positivt och kan attraheras av icke-bindande elektronpar på t ex en syreatom på en intilliggande molekyl. Det bildas en vätebindning. Den är starkare än van der Waalsbindningen och dipol-dipolbindningen. Vätebindningar har stor betydelse för att stabilisera strukturen i bl a proteiner och DNA.

Gas

Gaser har speciella egenskaper som skiljer dem från vätskor och fasta ämnen. I en gas är avståndet mellan partiklarna mycket större än i en vätska. Avståndet är så stort att det inte finns några intermolekylära krafter som håller ihop partiklarna. De rör sig med stor hastighet, oordnat och fritt från varandra.

Gastryck av molekylernas kollisioner

En molekyl är väldigt liten, men det finns väldigt många! Varje gång en molekyl stöter emot ytan, på en burk t ex, så ger den en liten rekyl som tenderar att stöta bort föremålet. Alla molekylernas stötar ger tillsammans ett tryck som är större än man normalt föreställer sig. Vid normalt lufttryck är kraften 1000 N per dm2. Det motsvarar tyngden av 100 kg på varje kvadratdecimeter eller tyngden av 10 ton på varje kvadratmeter!

Att inte burkar, människor, fotbollar med mera trycks ihop av de väldiga krafterna beror på att det finns ett mottryck inifrån som är lika stort.

I figuren nedan ser man att det är fler molekyler som kolliderar med väggen på vänster sida än på höger. Gastrycket är alltså högre på vänster sida om väggen.

Gastrycket orsakas av molekylernas många små stötar. Gastrycket till vänster om väggen är högre därför att det är fler kollisioner.
Bild: © Svante Åberg

Kollisionerna på ömse sidor om väggen är ungefär lika kraftiga, vilket betyder att partiklarna rör sig ungefär lika fort. Man kan alltså dra slutsatsen att temperaturen är densamma på båda sidor om väggen.

Temperatur, kärlets volym och substansmängden påverkar trycket

Partiklarna kolliderar med varandra och med det omgivande kärlet. Det utgör gasens tryck. Trycket hos en gas beror på flera saker:

Alltså, trycket är proportionellt mot absolut temperatur och substansmängd och omvänt proportionellt mot volymen. Detta kan sammanfattas i Allmänna gaslagen.

Allmänna gaslagen:
pV = nRT
p = tryck, Pa
V = volym, m3
n = substansmängd, mol
T = temperatur, Kelvin
R = proportionalitetskonstant = 8,3145 J K-1 mol-1

Molvolym

Gasmolekylernas sammanlagda volym är väldigt liten i förhållande till gasens totala volym. Detta gör att en viss substansmängd av i stort sett alla gaser har samma volym vid samma tryck och temperatur. Gaserna har samma molvolym, och vid standardtryck och standardtemperatur (STP: p = 1 atm = 101,325 kPa = 1,01325 bar, T = 25 °C = 298,15 K) är molvolymen 24,47 dm3/mol.

Gasens densitet

Enklast är att räkna på en mol av gasen. Till exempel väger en mol koldioxid (CO2) 12,0 g + 2·16.0 g = 44,0 g. Vid standardtemperatur och tryck (se ovan) är molvolymen 24,47 dm3. Då är densiteten 44,0 g/24,47 dm3 = 1.80 g/dm3.

Luft består till ungefär 20% av syrgas (O2) och 80% kvävgas (N2). En mol syrgas väger 2·16.0 g = 32.0 g. En mol kvävgas väger 2·14.0 g = 28.0 g. En mol luft innehåller 0,20 mol syre och 0,80 mol kväve. En mol luft väger då 0,20·32,0 g + 0,80·28,0 g = 28,8 g. Vikten genom molvolymen blir då 28,8 g/24,47 dm3 = 1.18 g/dm3.

Dessa två beräkningar visar att koldioxid är tyngre än luft. Därför sjunker koldioxid till marken när den släpps ut i luften.

En motsvarande beräkning av densiteten för vattenånga (H2O) ger densiteten 18,0 g/24,47 dm3 = 0,73 g/dm3. Man kan alltså se att vattenångan är mycket lättare än luften. Därför stiger vattenånga som avdunstar från marken och vattendragen uppåt i osynliga bubblor av ånga. När vattenångan kommit tillräckligt högt är temperaturen så låg att den kondenserar till vattendroppar och blir synlig i form av moln.

Gaspartiklarnas rörelseenergi

Gaspartiklarna rör sig slumpmässigt, men i genomsnitt har de en rörelseenergi som motsvarar temperaturen. Ju högre temperaturen är, desto snabbare rör sig partiklarna. Temperaturen är därför ett mått på gaspartiklarnas rörelseenergi.

När man har en blandning av gaspartiklar som väger olika mycket, så får olika tunga partiklar ändå samma genomsnittliga rörelseenergi. Det innebär att tunga gaspartiklar rör sig långsammare än lätta gaspartiklar, annars skulle inte rörelseenergierna vara lika.

Till exempel rör sig vätemolekyler (H2) med molekylmassan 2 u 3.74 gånger snabbare än kvävemolekyler (N2) med molekylmassan 28 u. Man skulle kunna tro att vätet skulle röra sig 14 gånger snabbare eftersom kvävet är 14 gånger tyngre, men rörelseenergin är proportionell mot kvadraten på hastigheten. Därför blir kvoten mellan hastigheterna √ 28/2 = √ 14 = 3.74.

Gaslagar

Volymen och/eller trycket hos en gas varierar med temperaturen. Det beror på att med ändrad temperatur ändras gasmolekylernas rörelsehastighet. Om temperaturen sänks avtar hastigheten, krockarna mellan molekyler och molekyler och väggar blir mildare och rekylerna mindre. Om väggen kan krympa (t.ex. i en ballong) minskar volymen.


Gastrycket hos den inneslutna luften i ballongen balanseras precis av lufttrycket utanför ballongen plus ballongens elastiska sammandragning. Ifall luften är innestängd i en plastpåse som bara är delvis fylld, så bidrar inte påsen med något eget tryck, utan det är enbart det yttre lufttrycket som balanseras.
Bild: © Svante Åberg

Volymen och/eller trycket beror också på substansmängden gas, dvs. hur många mol gas vi har. En större mängd kräver antingen större volym eller ger högre tryck.

För att uttrycka sambanden mellan olika tryck, volym, temperatur och substansmängd hos gaser används följande beteckningar och enheter:

p = tryck (N/m2)
V = volym (m3)
T = absolut temperatur (K)
n = substansmängd (mol)
R = proportionalitetskonstant i allmänna gaslagen med värdet 8,314 J K-1 mol-1
k1, k2 osv. = proportionalitetskonstanter i gaslagarna med olika enheter

Allmänna gaslagen (gasernas allmänna tillståndsekvation) sammanfattar sambanden mellan substansmängd, temperatur, tryck och volym till en formel:

p·V = n·R·T (R = 8,314 J K-1 mol-1)

Evangelisto Torricello

Gaslagarna började undersökas 1643. Det började med barometern och en man som hette Evangelisto Torricello (1608-1647). Torricello använde kvicksilver för att tillverka den första barometern 1643.

Torricello fick ingen gaslag uppkallad efter sig. Däremot blev han ärad genom enheten Torr för tryck. En Torr motsvarar en mm av kvicksilverpelaren i hans barometer.

Boyles gaslag - trycket gånger volymen är konstant

Detta ledde till att Robert Boyle (1627-1691) kunde upptäcka sambandet mellan tryck och volym. År 1622 publicerade Boyle det som idag är känt som Boyles lag, dvs. att volymen av en gas är omvänt proportionell mot det absoluta trycket. Det kan också uttryckas som att produkten av trycket och volymen är konstant.

Sambandet mellan tryck och volym visas i Boyles lag:

p·V = k1 (vid konstant T och n)

Charles gaslag - volymen är proportionell mot absoluta temperaturen

I slutet av 1700-talet tog Jacques Charles (1746-1823) nästa steg på vägen mot gasernas allmänna lag. Charles gjorde vetenskapliga undersökningar om sambandet mellan trycket och temperaturen hos gaser i slutna behållare med konstant volym och kom fram till Charles lag, men han publicerade aldrig sitt arbete och det var inte förrän 1808 som resultaten publicerades. Han visade att volymen är proportionell mot absoluta temperaturen under förutsättning att trycket hålls konstant.

Sambandet mellan volym och temperatur visas i Charles lag:

V = k2·T (vid konstant p och n)


När man prickar in de experimentellt erhållna värdena för volym och temperatur kan man extrapolera den räta linjen till absoluta nollpunkten.
Bild: © Svante Åberg

Gay-Lussacs gaslag - trycket är proportionellt mot absoluta temperaturen

Resultaten publicerades då av Joseph Gay-Lussac (1778-1850) som hade gjort de slutliga mätningarna. Gay-Lussac fortsatte att undersöka sambandet mellan volymen och temperaturen hos inneslutna gaser vid konstant tryck och idag finns Gay-Lussacs lag uppkallad efter honom.

Sambandet mellan tryck och temperatur visas i Gay-Lussacs lag:

p = k3·T (vid konstant V och n)

Dalton gaslag - det totala gastrycket är summan av partialtrycken för de enskilda gaserna i en blandning

Daltons lag presenterades 1801 av John Dalton (1766-1844): det totala trycket av en blandning av är lika med summan av det partiala trycket av varje enskild gas. Partialtrycket är trycket som varje gas skulle utöva om det ensam befann sig i samma volym som de blandade gaserna med samma temperatur.

Sambandet mellan partialtrycken och det totala trycket visas i Daltons lag:

p = p1 + p2 + p3 + ... (vid konstant T och V)

Avogadros gaslag - volymen är proportionell mot substansmängden

År 1811 publicerade Amadeo Avogadro (1776-1856) en artikel som presenterade att alla gaser vid samma temperatur och tryck, lika volymer av olika gaser innehöll samma antal molekyler. Denna idé ignorerades i nästan 50 år och det var inte förrän Stanisalo Cannizaro 1860 presenterade Avogrados arbete som man erkände det. Idag kallas en mol för Avogadros konstant. Genom denna upptäckt börjar vår moderna syn på gaser.

Sambandet mellan volym och substansmängd visas i Avogadros lag:

V = k4·n (vid konstant T och p)

Allmänna gaslagen

Alla dessa samband kan sammanföras i den allmänna gaslagen eller gasernas allmänna tillståndsekvation:

p·V = n·R·T (R = 8,314 J K-1 mol-1)
Ideala gaser

Den allmänna gaslagen har vissa begränsningar. Den förutsätter att gasmolekylerna inte påverkar varandra. Vid höga tryck eller temperatur nära kondensationspunkten får de så låg energi eller kommer så nära varandra att detta inte gäller. Man har infört begreppet ideala gaser för de tänkta gaser som inte har några intermolekylära krafter. I den ideala gasen antas också att själva gasmolekylerna saknar volym.

Mer om vetenskapsmännen bakom lagarna

Det verkar ha rått delade meningar under olika tider och i olika länder om vilken vetenskapsman som ska namnge vilken lag. En presentation av männen ger en inblick i naturvetenskapens utvecklingshistoria under tre sekler.

Robert Boyle

Boyle var son till en brittisk earl och levde 1627-1691. Han studerade både i hemlandet och i Genève och Florens. Boyle ägnade mycket tid åt experiment, något som inte var så vanligt på den tiden. Studier av fysikaliska och kemiska fenomen i lufttomt rum studerades, bl.a. Boyles tankar runt hur små enheter av materia förenas i bestämda grupperingar var början till molekylbegreppet.

Jacques Charles

Charles var fransman och levde 1746-1833. Han blev professor i fysik och var pionjär på ballongflygningens område.1783 gjorde han den första uppstigningen med sin egenhändigt konstruerade vätgasballong. Han ägnade bl.a. sin forskning åt att studera hur gasers volym påverkas av temperaturen.

Joseph-Louis Gay-Lussac

Gay-Lussac var också fransman och professor i fysik. Han levde 1778-1850. Gay-Lussac gjorde ballonguppstigningar och tog luftprover från olika höjder. Han upptäckte att väte och syre förenades till vatten i volymförhållandet 2 till 1 och fortsatte att studera gasreaktioner. Vidare förbättrade han framställningstekniken för natrium, kalium och svavelsyra och upptäckte grundämnet bor.

John Dalton

Dalton som levde 1766-1844 är känd som den moderna atomteorins grundare. Den formulerades i början av 1800-talet och stod sig i nästan 100 år. Dalton observerade viktförhållandet mellan olika ämnens minsta partiklar och detta ledde honom till atomteorin. Han antog att grundämnen bestod av med en för ämnet karaktäristisk massa. Dalton skrev meteorologisk dagbok i 57 år och gjorde undersökningar på partiell färgblidhet.

Amadeo Avogadro

Italienaren Avogadro, som levde 1767-1856, var först jurist och ämbetsman. Han blev, efter att ha bytt bana, professor i naturfilosofi och fysik. Inspirerad av Gay-Lussacs studier av gasers volymförhållanden vid kemiska reaktioner formulerade han tesen att alla gaser vid samma tryck och temperatur innehåller samma antal molekyler. Detta accepterades på 1860-talet.

Avogadro har fått ge namn åt Avogadros konstant, antalet molekyler eller partiklar i substansmängden en mol.

Luft

Atmosfären

Luften är den atmosfär som omger jorden och som vi andas. Luftlagret kring jordklotet är tätast vid jordytan, men tunnas successivt ut innan det övergår i rymden. Man brukar säga att atmosfären är 100 km tjock, därefter är man ute i rymden. Men det finns spår av jordens atmosfär ända upp till 1000 km höjd. Det kan verka som att atmosfären är väldigt tjock, men i jämförelse med jordens storlek är luftlagret bara en tunn hinna.

Sammansättningen hos torr luft är:

kväve (N2)78,08 %
syre (O2)20,95 %
argon (Ar)0,93 %
koldioxid (CO2)0,04 %
diverse ädelgaser, väte, mm....

Vattenångan i luften

I tabellen finns inte vattenånga med. Andelen vattenånga är variabel och beror främst på temperaturen. På sommaren är halten vattenånga i atmosfären mycket högre än på vintern. Den totala mängden vatten i luften motsvarar i genomsnitt bara 25 mm regn om allt vatten i atmosfären på hela jorden skulle falla ned som regn samtidigt.

Den tidiga atmosfären

Luften har inte alltid haft den sammansättning den har nu. När jordklotet nyss hade svalnat, efter att solsystemet skapats, fanns inget syre. Atmosfären bestod mest av koldioxid. Efter livets uppkomst ändrades successivt förhållandena. När fotosyntetiserande organismer producerade syre som slaggprodukt, var det till en början så att syret bands till järn och bildade rost. Men när järnet tog slut blev det överskott av syre som hamnade i atmosfären. Nya organismer som andades syre utvecklades. Under en period var syrehalten i atmosfären över 30 %, men sedan minskade det igen till dagens 21 %. Syrehalten i atmosfären fortsätter faktiskt att minska, något som har pågått under 1 miljon år, men minskningen är mycket långsam.

Luftens kvalitet

Vi är helt beroende av atmosfären. Människor och djur måste andas luften för att få syre. Syret skulle kunna ta slut om inte växter producerade syre med hjälp av energin i solljuset. Växterna andas i stället in koldioxid som vi andas ut, så växter och djur är beroende av varandra.

Luftens kvalitet är också viktig. Till exempel kan överskott av växthusgaser rubba jordens temperatur så att klimatet ändras och kanske går över styr. Föroreningar sprids också lätt med vindarna och skapar problem. Sura gaser orsakade stora försurningsproblem för ett antal årtionden sedan, men lyckligtvis har man tagit itu med problemet så att situationen med försurning inte är lika kritisk nu.

material på avancerad nivå kommer att läggas in här

Luftens löslighet i vatten

Luften innehåller framför allt kvävgas och syrgas, men även små mängder av argon och koldioxid. Gaserna i luften har en viss löslighet i vatten. Lösligheten beror på vilken gas det är. Koldioxiden har en särskilt hög löslighet i vatten.

Men koncentrationen av gasen i luften påverkar också hur mycket som löser sig i vattnet. Gasen i luften och gasen i löst form i vattnet står i jämvikt. Ju mer det finns i luften, desto mer löser sig i vattnet.

I vattnet finns därför mest kvävgas, därefter syrgas och sedan löst koldioxid. Koldioxiden reagerar också med vattnet och bildar kolsyra.

Salthalten i vattnet minskar gasernas löslighet. Därför är det lite mindre lösta gaser i havsvatten än i sötvatten.

Temperaturen är också viktig. Gasernas löslighet minskar snabbt med ökande temperatur. Det kalla vattnet vintertid kan innehålla betydligt med syre än det varma sommarvattnet. Vissa fiskarter, såsom laxfiskarna, är särskilt syrekrävande. De klarar sig därför inte i varma vatten.

Henrys lag

När man ska räkna på löslighet av gaser i en vätska används med fördel Henrys lag. Till exempel för att få reda på koncentrationen av syrgas i vattnet i en sjö eller koldioxidhalten i blodplasman. Lagen lyder: Vid konstant temperatur är lösligheten av en gas i en vätska proportionell mot gasens tryck. För ämnet A gäller

pA = kA·cA
där pA gasens ångtryck över lösningen, cA är koncentrationen av löst gas A och kA är en proportionalitetskonstant som är beroende av lösningsmedlet och det som ska lösas.

För koldioxid är värdet på kA = 2,98·106 dm3Pa/mol när lösningsmedlet är vatten vid 25 °C.

Koldioxiden har särskilt hög löslighet i vatten

Koldioxid är i rumstemperatur en färglös gas som är 1,5 gånger tyngre än luft vid samma tryck och temperatur. Gasen är doftlös och har en sur smak. Smaken uppkommer då koldioxid reagerar med saliv och bildar kolsyra (H2CO3). Koldioxid är den stabilaste av kolets oxider och är slutprodukten när kol och koloxider reagerar med luft eller syre. Koldioxiden lär lättlöslig i vatten. Vid 15 °C och normalt lufttryck kan man lösa nästan 1 liter koldioxid i 1 liter vatten om man har ren koldioxid ovanför vattenytan.

gas andel i luft andel i vatten
N2 78 % 51 %
O2 21 % 31 %
CO2 0,038 % 18 %

Av luftens gaser är det framför allt kväve, syre och koloxid som löser sig i vattnet. Koldioxiden är den överlägset mest lösiga gasen i vatten, syre därnäst och kväve minst. Lösligheten av "luft" ger dock omvända ordningsföljden därför att den lösta gasen i vattnet står i jämvikt med samma gas i luften. Eftersom halten koldioxid i luften bara är 0,038 %, så blir trots allt halten koldioxid i vattnet ganska liten. I luften finns 78 % kvävgas och 21 % syrgas, vilket gör att trots marginellt lägre löslighet för kvävgas i vatten än för syrgas, så är den absoluta halten kvävgas i vattnet högre.

En anledning till att koldioxid löser sig förhållandevis bra i vatten är att den reagerar med vattnet och bildar en svag tvåprotonig syra, kolsyra (H2CO3). Syran protolyseras sedan vidare till vätekarbonat (HCO3) och karbonatjoner (CO32−). Vi har alltså kopplade jämvikter mellan luftens koldioxid och karbonatet som bildas i lösningen:

CO2(g) ⇄ CO2(aq) ⇄ H2CO2(g) ⇄ HCO3 ⇄ CO32−

Det är dock bara en liten del av syran som protolyseras när koldioxid löser sig i rent vatten, större delen av kolsyran finns löst som CO2(aq). Men om vattnet är basiskt ökar lösligheten dramatiskt. Kolsyran neutraliseras nämligen av basen och jämvikten drivs kraftigt åt höger.

Temperaturberoendet hos gasers löslighet

Lösligheten av koldioxid, och andra gaser är beroende inte bara av trycket, utan även av temperaturen. I vatten gör lägre temperatur att lösligheten för gasen ökar.

Luftens löslighet i sötvatten vid olika temperaturer.
Koldioxiden (trianglar) har oproportionerligt hög löslighet med tanke på hur låga halterna är i atmosfären. Men man kan också se en trend att koldioxidens löslighet blir relativt sett sämre vid högre temperatur. Vid 0 °C är lösligheten 50% av syrets, men vid 50 °C är den bara 30% av syrets löslighet i vatten.
Bild © Svante Åberg

Lösligheten för gaserna minskar kraftigt med temperaturen, se diagrammet ovan. När man värmer upp vattnet drivs gaserna ut. De första bubblorna man ser när vattnet börjar sjuda är lösta gaser som inte kan hållas kvar lösta i vattnet på grund av stigande temperatur. När vattnet kokar, är det inte gaser som avgår utan vatten som omvandlas till vattenånga och bubblar upp.

När vatten värms upp utan att gaserna får möjlighet att avgå bildas en övermättad lösning. Det vill säga vattnet håller mer gas än vad som möjligt. Detta är vad som sker när man värmer vatten i mikrovågsugnen till 100 grader. Då skulle normalt så gott som all gas vara löst ur vattnet. Men i en mikrovågsugn värms vattnet lika mycket i hela koppen och då cirkulerar inte vattnet och gaserna kommer inte upp till ytan och kan inte avges. Därför kan det brusa om till exempel en tepåse, eller om man rör i en kopp med vatten som blivit värmd i mikrovågsugnen. Detta skiljer sig mot att värma vatten i en kastrull, då cirkulerar vattnet på grund av att det är varmare i mitten av kastrullen än på kanterna. Varmt vatten stiger, svalnar något och sjunker längs med sidorna på kastrullen. Cirkulationen gör att gaserna hela tiden kan avges till luften ovanför.

Observera att sambandet att lösligheten minskar med ökande temperatur gäller i vatten, men inte i organiska lösningsmedel. I organiska lösningsmedel ökar lösligheten för gaserna med temperaturen.

Övermättad lösning

Ett exempel på övermättad lösning är när man kokar vatten i en mikrovågsugn. När du sedan stoppar ned tepåsen, så kanske du upptäcker att det börjar skumma. Det är överskottet av lösta gaser som avgår. Vattnet blev övermättat på gas genom att lösligheten för gaserna minskade när temperaturen ökade.

Litteratur

  1. Ideal gas law, Wikipedia
    https://en.wikipedia.org/wiki/Ideal_gas_law (2017-09-05)
  2. Ideal Gas Law, Hyper Physics
    http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/idegas.html (2017-09-05)
  3. Gas laws, Wikipedia
    https://en.wikipedia.org/wiki/Gas_laws (2017-09-05)
  4. The Historical Gas Laws, Jeff Altig, New Mexico Tech
    https://infohost.nmt.edu/~jaltig/HistoricalGasLaws.pdf (2017-09-05)
  5. Learn about Kinetic Theory of Gases (YouYube), Iken Edu
    https://www.youtube.com/watch?v=YSTRa27a3BQ (2017-09-05)
  6. Kinetic molecular theory of gases (YouYube), Khan academy
    https://www.youtube.com/watch?v=Qsa4aAdpHfY (2017-09-05)
  7. Applications of Kinetic Theory, Hyper Physics
    http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kapcon.html#c1 (2016-03-11)
  8. Gases and kinetic molecular theory, Khan academy
    https://www.khanacademy.org/science/chemistry/gases-and-kinetic-molecular-theory (2017-09-05)
  9. The Kinetic Molecular Theory, Purdue university
    http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch4/kinetic4.html (2017-09-05)
  10. Dipping Bird Experiments (YouTube), Sixty Symbols, YouTube
    https://www.youtube.com/watch?v=c-0-zH4Ip7w (2017-08-24)
  11. Dippy Drinking Birds, Rotten Library
    http://www.rotten.com/library/culture/novelties/dippy-drinking-birds/ (2017-09-05)

Fler experiment


fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

gaser
Blåsa ballong med hjälp av PET-flaska
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Ett glas luft
Försvinnande bläck
Ljuset under glaset
Mentos-pastiller i kolsyrad läsk
Osynlig gas
Syrehalten i luft

jämvikt
Anden i flaskan
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Avdunstning och temperatur
Bestämning av antalet kristallvatten i kopparsulfat
Brus-raketen
Den frysande bägaren
Den omöjliga tvålen - den är preparerad!
Flaskor mun mot mun
Framställ väldoftande luktämnen
Fryspunktsnedsättning
Färgämnen i M&M
Försvinnande bläck
Gummi och lösningsmedel
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur smakar salmiak?
Innehåller koksaltet jod?
Kemi i en brustablett
Kemi i en plastpåse
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Luftfuktighet och rostbildning
Löslighet och pH - En extraktion
Maskrosen som krullar sig
Massverkans lag och trijodidjämvikten
Molnet i flaskan
När flyter potatisen?
Osmos i potatis
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Principen för dynamisk jämvikt
Reaktionshastighet med permanganat
Saltat islyft
Superabsorbenter i blöjor
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför äter vi Samarin?
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

urval reviderat experiment
Anodisering och färgning av aluminium
Avdunstning och temperatur
Citronbatteri
Den brinnande sedeln
Den tillknycklade plåtburken
DNA ur kiwi
Elektrokemisk skrift
Ett glas luft
Indikatorpapper för plus och minus på batteriet
Innehåller koksaltet jod?
Luftfuktighet och rostbildning
Rengöra silver
Rostbildning och rostskydd
Rostindikator visar var järnet rostar
Syrehalten i luft
Tag bort rost med elektrisk ström
Testa C-vitamin i maten
Vad händer när degen jäser?
Åka hiss