Diska med äggula

Tillhör kategori: fysikalisk kemi, kemisk bindning, livsmedel, vardagens kemi

Författare: Mats Sjöberg

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Tid för förberedelse: 10 minuter

Tid för genomförande: 20 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Busenkelt

Introduktion

När man ska diska använder man vanligtvis diskmedel för att få fett och matrester att lossna från tallrikar och bestick. Men det finns andra vägar att gå för att få disken ren. Vi ska i detta experiment pröva att använda äggula istället för diskmedel. Det är nämligen så att äggula innehåller ett naturligt ämne som fungerar på samma sätt som vanligt diskmedel.

Riktlinjer

Experimentet passar kanske bäst som demonstrationsförsök, men kan lika gärna utföras som elevförsök. Om eleverna utför försöket kan de lämpligen arbeta två och två.

Säkerhet

Experimentet är ofarligt.

Resterna spolas ut i avloppet.

Materiel

Förarbete

Köp ägg.

Utförande

  1. Börja med att skilja äggulan från vitan. Äggulorna läggs direkt i en glasslåda och vitorna i en 100 ml-bägare.
  2. Använd skeden och blanda sedan äggulorna under omrörning med c:a 1 liter vatten.
  3. Gnid in den andra 100 ml-bägaren med matolja och lägg sedan ner den i glasslådan med "diskvattnet".
  4. Diska!
  5. Fyll den andra glasslådan till hälften med vatten och skölj bägaren däri.
  6. Låt sedan bägaren självtorka.
  7. Granska diskresultatet. Titta och känn med ett finger. Har disken blivit ren?

Variation

En variation kan vara att utföra försöket enligt ovan men med äggvitan istället. Skillnader?

Man kan också utför test med enbart vatten eller med vatten och diskmedel.

Förklaring

Fetter har mycket låg löslighet i vatten och det är därför svårt att få disken ren om man bara använder sig av vatten vid diskningen. Tillsätter man däremot ett diskmedel så blir det stor skillnad. Diskmedel fungerar genom att de löser upp fett och gör det vattenlösligt. Det går till så att ena änden av diskmedelsmolekylen löser sig i fettet medan den andra vänder sig ut mot det omgivande vattnet. Fettet blir på det viset alltså dolt för de omgivande vattenmolekylerna och kan då sköljas bort från disken. För att detta skall vara möjligt krävs att diskmedelsmolekylen består av två ändar. Den ena änden är hydrofob, dvs. fettlöslig, och den andra änden är hydrofil, dvs. vattenlöslig. Dessutom så sänks vattnets ytspänning vilket är önskvärt i detta sammanhang. I den här laborationen är det lecitin som fungerar som diskmedel.

Diskmedelsmolekylernas fettlösliga svansar löser sig i fettdroppen, medan de vattenlösliga huvudena pekar ut mot vattnet. Det gör att fettdroppen omges av ett vattenlösligt skal som får hela droppen att trivas bra i vattenmiljö och därför kan frigöra sig från underlaget. Överskottet av diskmedelsmolekyler i vattenlösningen slår sig gärna samman i miceller och gömmer sina fettlösliga svansar inåt i en bolliknande struktur. Lecitin från äggula fungerar på samma sätt som diskmedlet i figuren.
Bild: © Svante Åberg

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Lecitin

Förekomst och egenskaper

I detta försök är den aktiva beståndsdelen lecitin, ett ämne som varit känt sedan mitten av 1800-talet. Ett annat namn för lecitin är fosfatidylkolin vilket säger lite mer om ämnets molekylstruktur. Lecitin hör till gruppen fosfolipider som bl.a. är vanliga komponenter i biologiska membraner. Där bidrar de till att göra membranen mjuka och följsamma. Detta är viktigt för att cellen och dess delar skall kunna fungera korrekt. Fosfolipiderna är de vanligaste membranlipiderna. Två ytterligare grupper är glykolipider och kolesterol.

Lecitinets kemiska byggnad gör att det får två ändar. Den ena änden är hydrofil (vattenälskande) och den andra är hydrofob (vattenskyende). Detta är av största vikt när lecitin skall delta i membranuppbyggnad. Lecitinet orienterar sig då på så sätt att den hydrofila delen pekar mot den sida av membranet där vattenförekomsten är stor, i en cell vanligen dess insida respektive utsida. Den hydrofoba änden kommer att orientera sig så att den befinner sig där miljön är opolär dvs. vanligtvis tillsammans med kolkedjor av olika slag inuti själva membranet. Membranet kommer på så vis att bestå av dubbla lager fosfolipider.

Bild: © Svante Åberg

Lecitin finns naturligt i en rad olika biologiska system. I människokroppen bildas lecitinet av B-vitaminerna kolin och inositol, och en stor del återfinns i nervsystemet. Speciellt vissa delar av hjärnan kan innehålla så mycket som upp till 40 % lecitin. Huden kan innehålla upp till 10 % lecitin. I äggula finns det mellan 8-10 % lecitin och det är därför äggula används vid matlagning då man ska göra t.ex. majonnäs eller aioli. Det fungerar då som ett emulgeringsmedel och gör att oljan kan blandas med mer polära ingredienser som vatten och vinäger och resultatet blir en slät och fin majonnäs. En variant av lecitin är lysolecitin. Det är en giftig form av lecitin som finns i vissa ormgift och som bryter ner de röda blodkropparna. Det finns både animaliskt och vegetabiliskt lecitin. Det mesta lecitinet som används kommersiellt är utvunnet ur sojaolja eller majsolja. Det är en billigare råvara än om man skulle använda t.ex. ägg som råvara.

Bildning

Fosfolipider bildas genom förestring mellan alkoholen glycerol och två fettsyror samt fosforsyra. Fettsyrorna förestras mot C-1 och C-2 på glycerolstammen och fosforsyran mot C-3. Resultatet av detta brukar kallas fosfatidat eller diacylglycerol-3-fosfat. Fosfatidat är den enklast byggda fosfolipiden och är i sig själv ovanlig i membranerna. Den tjänstgör istället som intermediär i biosyntes av andra fosfolipider t.ex. lecitin.

Lecitin, även kallad fosfatidylkolin, är en fosfolipid. Det polära "huvudet" löser sig i vatten.
Bild: © Svante Åberg

Lecitin bildas hos djur och växter genom att fosfatgruppen i fosfatidat genomgår ytterligare förestring med OH-gruppen i B-vitaminet kolin. Innan detta kan ske genomgår först kolinet en rad aktiveringssteg för att bilda en cytidininintermediär kallad CDP. Denna bildar tillsammans med fosfatidat slutligen fosfatidylkolin (lecitin).

Biosyntes av fosfatidylkolin
Bild: © Svante Åberg

I andra fosfolipider kan det vara t.ex. serin (aminosyra) eller etanolamin (amin) som förestras. Det behöver alltså inte vara alkoholer som förestras, utan det viktiga är att ämnet innehåller en OH-grupp, vilket både serin och etanolamin gör.

Löslighet och polaritet

Ett ämnes löslighet i vatten avgörs till stor del av hur polärt ämnet är. Vattenmolekylens byggnad leder till att vatten är en dipol, dvs. en molekyl med två olikt laddade poler. En dipol uppstår då två atomer av olika slag och alltså med olika elektronegativitetsvärde bildar en molekyl genom kovalent bindning. Atomernas olika elektronegativitetsvärdena gör att molekylen får en ojämnt fördelad laddning även om den totalt sett är oladdad.

Vattenmolekylens laddningsfördelning

Förening Dipolmoment (Debye)
CH4 0,00
CCl4 0,00
NO 0,16
NO2 0,40
H2S 0,92
H2O 1,84
H2O2 2,13

När molekylerna består av fler än två atomer av olika slag avgör deras geometriska form om de blir dipoler eller inte. Ett ämne med dipolkaraktär brukar sägas vara polärt. Ett mått på hur polärt ett ämne är, är det så kallade dipolmomentet. I tabellen nedan ges några exempel på olika ämnen och deras dipolmoment.

Vi ser av tabellen att molekyler där laddningsfördelningen är symmetrisk, som t.ex. i metan (CH4) och koltetraklorid (CCl4), inte har något dipolmoment, medan ämnen med tilltagande asymmetri har ökande dipolmoment. Vattenmolekylen har ett högt dipolmoment och är således ett polärt lösningsmedel. Ämnen som är dipoler kan binda till varandra med dipol-dipolbindning eller med jon-dipolbindning. Detta är förklaringen till varför polära vätskor som vatten är bra lösningsmedel för andra polära molekyler och salter. Å andra sidan gäller att opolära ämnen som koltetraklorid eller bensin är bra lösningsmedel för opolära ämnen som fetter och oljor. Detta förhållande sammanfattas i den välkända tumregeln "lika-löser-lika".

Ämnen som fungerar som emulgeringsmedel, såsom lecitinet i denna laboration, har båda dessa egenskaper i en och samma molekyl. Den delen av molekylen med de polära egenskaperna löser sig således gärna i vattnet, medan den delen med de opolära egenskaperna gärna löser sig i fett. Molekylen fungerar som en länk mellan vattenfasen och fettfasen. En konsekvens av detta blir då att molekylen får förmåga att göra feta ämnen vattenlösliga. Detta utnyttjas då man tillverkar syntetiska diskmedelsmolekyler som exempelvis natriumlaurylsulfat (natriumdodecylsulfat). Värt att notera i sammanhanget är att emulgeringsmedel som avses att användas för rengöringsändamål som diskning och tvätt brukar benämnas detergenter.

Användning

Lecitin har fått stor användning som emulgeringsmedel inom livsmedelsindustri och kosmetikaindustri. På senare tid har också hälsokostindustrin fått upp ögonen för lecitinets positiva effekter, bl.a. bidrar det till att sänka halten av skadligt kolesterol (LDL) i blodet till förmån för det goda kolesterolet (HDL). I alla fallen så är det lecitinets emulgerande egenskaper som utnyttjas.

Fördjupning

Livsmedel

Maten håller igång oss

Livsmedel behövs för att hålla igång vårt biologiska maskineri. Det är via maten som vi får energi att röra oss, tänka, men också att växa och reparera våra celler i kroppen. Kroppens maskineri är oerhört komplicerat, men det klarar att styra flödena av både energi och näring till kroppens olika delar vid rätt tillfälle. Kroppen hanterar också att ta hand om de restprodukter som vi måste göra oss av med.

Processerna i kroppen när maten bryts ned, fördelas, omvandlas och görs av med, är i grund och botten kemiska reaktioner som drivs av energin i maten. Maskinen är vår biologiska kropp, men de enskilda reaktionerna är kemiska. På så sätt kan man säga att vår kropp är en kemisk maskin.

Matens ursprung

Ursprungligen hittade vi vår föda i naturen. I det moderna samhället är de flesta livsmedlen processade på något sätt. Även livsmedel som inte är processade i sig är ofta odlade eller uppfödda med metoder som skiljer sig från det som sker i naturen. Syftet är att öka produktionen och att säkerställa kvalitén.

Att livsmedlen inte är helt naturligt producerade behöver inte vara ett problem. Det är bra att vi kan producera mera med mindre resurser. Det är också bra att vi har koll på kvalitén. Men vissa saker är inte bra. Tillsatser som gör att livsmedlen får längre hållbarhet, ser mer aptitliga ut och smakar bättre är inte alltid nyttiga, även som det kan verka så.

Grunden till all produktion av livsmedel är solens energi och växternas fotosyntes. I nästa steg kan djuren äta växterna och producera kött som vi sedan kan äta, men ursprunget är växterna. Men om inte djuren och människorna fanns, så skulle växterna till slut bli utan koldioxid som de behöver för sin fotosyntes. Djur och människor andas ut koldioxid. Kropparna bryts också ned till koldioxid och mineraler när de förmultnar. Detta tar växterna hand om, ofta med svamparna som mellanled. Det hela är ett kretslopp där både växter, svampar och djur ingår. Allt levande både äter och äts. Det som får kretsloppet att hålla igång är strålningen från solen.

Tycke och smak

Genom evolutionen har vi lärt oss att välja vad som är bra med hjälp av lukten och smaken. Oftast är det som vi gillar också nyttigt. När maten är skämd, brukar den börja lukta illa, vilket gör att vi inte äter det som kan göra oss sjuka.

Men det vi tycker om är inte nödvändigtvis bra för oss. Sötma är en signal att maten är bra, vilket stämde väl när människan levde nära naturen och behövde den energi man kunde finna. Men nu finns socker i överflöd. Det blir för mycket av det goda, så att vi blir feta och får sjukdomar som karies och diabetes.

Smaken för maten är också en kulturell fråga. Den mat vi lär oss tycka om från barnsben tycker vi oftast om resten av livet. Det finns också kulturella aversioner mot vissa typer av mat. I Sverige är vi inte vana att äta insekter, men insekter är förträfflig mat som är både nyttig och miljövänlig.

material på avancerad nivå kommer att läggas in här

Löslighet

När atomer eller molekyler av ett ämne blandas på atom-/jon-/molekylnivå med ett annat ämne, så säger man att ämnet löser sig. Både fasta, flytande och gasformiga ämnen kan gå i lösning på detta sätt. Ämnet som tar emot partiklarna som löser sig, och som förekommer i större mängd, kallas lösningsmedel.

Exempel på lösningar är:

En lösning behöver alltså inte vara en vätska. Det finns både fasta, flytande och gasformiga lösningar.

Begränsad löslighet

Ofta är lösligheten begränsad. Det har att göra med den jämvikt som uppstår mellan ämnet i lösning och samma ämne i ren form. Till exempel löser sig koksalt i vatten upp till 36 g per 100 ml (motsvarande 26 vikts-%) vid 20 °C.

Jonerna i den fasta natriumkloriden löser sig med jämn hastighet, vilket tenderar till att öka koncentrationen av löst ämne. Men den motsatta reaktioner sker också. Natrium- och kloridjonerna i lösningen faller ut som fast natriumklorid. Den hastighet med vilken saltet faller ut beror på hur ofta natrium- och kloridjoner stöter på varandra i lösningen. Därför ökar utfällningen av salt med koncentrationen i natriumkloridlösningen. Vid 26 vikts-% NaCl är utfällningen lika snabb som upplösningen av koksaltet. Då sker ingen nettoförändring. Man har en dynamisk jämvikt där lösningen är mättad, dvs. innehåller maximal mängd koksalt.

Obegränsad blandbarhet

Ibland är lösligheten obegränsad och det lösta ämnet och lösningsmedlet är fullständigt blandbara i alla koncentrationer. Exempel på detta är etanol i vatten. Vilken proportion av etanol och vatten du än blandar, så kommer du att få en homogen lösning, dvs. en enda fas. Du kommer inte att se någon fasgräns mellan ämnena.

Lösning av gasformiga partiklar i en annan gas har alltid obegränsad blandbarhet. Det beror på att i en gas så är partiklarna så långt ifrån varandra att de inte påverkas av några attraktionskrafter som tenderar att klumpa samman ämnena i aggregat. Alla atomer/molekyler rör sig helt fritt i gaslösningen.

Bindningskrafterna avgör lösligheten - "Lika löser lika"

När det finns ett löst ämne och ett lösningsmedel, så finns det tre alternativa bindningar som kan uppstå mellan partiklarna (atomerna/molekylerna/jonerna):

Man brukar använda en tumregel: "Lika löser lika". Det syftar på polariteten, dvs. laddningen hos partiklarna. Ämnen löser sig lättast i varandra om de är ungefär lika polära. Vi ska förklara hur detta kommer sig.

Vatten är en starkt polärt ämne. Visserligen är molekylen som helhet oladdad, men det finns en laddningsförskjutning så att syreatomen är negativ och väteatomerna positiva. Två vattenmolekyler binder varandra ganska starkt genom att syret i den ena molekylen lägger sig nära vätet i den andra vattenmolekylen. Den negativa och positiva laddningen attraherar varandra. Vatten binder alltså varandra ganska starkt.

Kolvätena i bensin är ett mycket opolära. Kolvätena är oladdade molekyler som inte heller har någon laddningsförskjutning inom sig i molekylen. Det gör att kolväten bara binder varandra svagt med hjälp av Londonkrafter (Van der Waals-krafter).

Ju starkare bindningen är, desto större chans är det att partiklarna ska klumpa sig samman. Vatten i blandning med bensin ger mycket dålig löslighet. Vattenmolekylerna klumpar samman sig med sina starka krafter och bildar en egen fas. Kolvätemolekylerna blir över och bildar en annan fas. Kolvätena bildar inte en egen fas på grund av attraktion mellan kolvätena, utan därför att de inte få vara tillsammans med vattnet. De blir så att säga ratade av vattenmolekylerna.

Om två ämnen inte har samma polaritet, men ändå inte skiljer sig åt alltför mycket, så får de en god löslighet även om den är begränsad. En möjlighet att lösa ett ämne är därför att använda lösningsmedel i flera steg. Om du till exempel har fått smutsig motorolja på händerna, så är det svårt att tvätta bort med tvål. Motoroljan är alltför opolär för att tvålen riktigt ska kunna lösa den. I ett första steg kan du då smörja händerna med margarin, som är opolärt. Oljan löser sig i margarinet. I nästa steg tvättar du bort margarinet med hjälp av tvål och vatten. Oljan som är löst i margarinet följer då med margarinet när det tvättas bort med vatten.

Hydrofil och hydrofob

Det grekiska ordet fili betyder kärlek, vänskap och dragning till. Motsatsen i grekiskan är fobi, som betyder fruktan eller rädsla för. Även ordet hydro kommer från grekiskan och anger att något har med vatten att göra.

Inom kemin talar vi om hydrofila eller hydrofoba egenskaper hos molekylgrupper eller hela molekyler. Förklaringen till de hydrofila och hydrofoba egenskaperna ligger hos attraktionskrafterna mellan partiklarna i en vattenlösning, det vill säga de intermolekylära bindningarna.

Vatten är ett starkt polärt lösningsmedel

Vi utgår från att vårt lösningsmedel är vatten.

Mellan vattenmolekylerna finns starka vätebindningar. Vätebindningarna orsakas av ett positivt laddningsöverskott på väteatomen och ett negativt på syreatomen. Vätet i en vattenmolekyl attraheras därför av syret i en angränsande vattenmolekyl. Det är den starka polariteten i vätebindningarna som är kännetecknande för vattnets egenskaper.

Det finns andra lösningsmedel som har liknande egenskaper som vatten. Ett exempel är metanol (CH3OH), som också har en OH-grupp och kan vätebinda. Ett annat exempel är ättiksyra (CH3COOH), som även den har en OH-grupp som kan vätebinda. Vatten är dock i en särställning bland lösningsmedel vad gäller styrkan hos polariteten.

Förklaringen bakom "lika löser lika"

I vattenlösningen binder vattenmolekyler till varandra med sina vätebindningar. En lösning förutsätter att lösningsmedlet och det lösta ämnet blandas ända ner på molekylnivå. Det lösta ämnet och lösningsmedlet är i väldigt nära kontakt med varandra. För att detta ska vara möjligt måste bindningen mellan det lösta ämnet och vattnet vara så stark att den kan konkurrera med vätebindningen mellan vattenmolekyler.

Polärt ämne i polärt lösningsmedel

En förutsättning för en stark bindning mellan det lösta ämnet och vatten är att det lösta ämnet också är polärt, det vill säga har laddningar som kan attrahera vattenmolekylernas laddningar. Exempelvis kan metanol, med sin polära OH-grupp, vätebinda till vattenmolekyler. För vattenmolekylerna gör det därför inte så stor skillnad om de binder till en annan vattenmolekyl eller till en metanolmolekyl. Vatten och metanol kan blandas ända ner på molekylnivå.

Ett annat exempel på polärt ämne är koksalt. Polariteten finns inbyggd i saltets byggstenar, som ju är jonerna Na+ och Cl. Polariteten hos saltet gör att det löser sig i vatten.

Opolärt ämne i polärt lösningsmedel

Vatten och olja separerar i två faser eftersom vatten är polärt, men olja opolär.
Bild: Svante Åberg

Om det lösta ämnet är opolärt, eller bara är svagt polärt, så skapas ingen stark bindning till vatten. Vattnet binder bara till andra vattenmolekyler. Det betyder att allt vatten klumpar ihop sig till en fas.

Det ämne som skulle lösas blir över och bildar en egen fas. Det är inte så att molekylerna i det opolära ämnet attraheras till varandra. Tvärtom är bindningarna mellan de opolära molekylerna svaga. Men det är helt enkelt så att de blir över när vattenmolekylerna håller ihop.

Bildningen av faser bygger på att polära och opolära ämnen inte blandar sig med varandra. Sedan gör skillnaden i densitet att den ena fasen flyter upp och den andra sjunker. Om du försöker blanda vatten (polärt) med bensin (opolärt), så kommer den lättare bensinen att lägga sig som ett lager ovanpå vattnet. Bensinen utgör den ena fasen och vattnet den andra.

För att lättare förstå hur detta fungerar kan du tänka dig att du har en kulpåse med stenkulor och små runda magneter. Om du skakar på påsen ett tag, så kommer magneterna att klumpa ihop sig. Över blir stenkulorna, som ligger för sig själva. Magneterna motsvarar vattenmolekyler och stenkulorna opolära molekyler i denna liknelse.

Opolärt ämne i opolärt lösningsmedel

När lösningsmedlet är opolärt, som till exempel bensin, så finns inga starka bindningar mellan molekylerna i lösningsmedlet. Det gör det lätt för andra molekyler att konkurrera med bindningarna mellan lösningsmedelsmolekylerna. Till exempel kan opolära jodmolekyler lösa sig i bensin. Bindningen mellan jod och bensin är visserligen svag, men det gör inget eftersom bindningen mellan två bensinmolekyler också är svag. Det lösta ämnet och lösningsmedlet blandar sig ner på molekylnivå.

Detta exempel kan illustreras med en kulpåse där man har stenkulor och glaskulor. Även om det är olika sorters kulor, så blandas de med varandra om påsen skakas, eftersom inga kulor attraherar varandra.

Hydrofob effekt


Fosfolipider kan bilda olika strukturer som bygger på den hydrfoba effekten där den opolära delen av molekylen undviker kontakt med vattnet.
"Phospholipids aqueous solution structures" av Mariana Ruiz Villarreal, LadyofHats" Public Domain Mark

Hydrofob effekt är tendensen hos opolära ämnen att klumpa sig samman i vattenlösningar och utestänga vattenmolekyler.

Exempel är bildningen av cellmembran där fosfolipider vänder sin opolära (hydrofoba) ände in mot membranets mitt och den polära (hydrofila) delen ut mot vattenlösningen. Cellmembranet är ett bilager där dess inre hydrofoba del är gömd från kontakt med vattnet.

Ett annat exempel är hydrofoba områden på proteiner. Sådana områden har en förmåga att binda till sig opolära molekyler. Ofta är enzymers funktion kopplade till sådan hydrofob effekt hos den aktiva ytan på enzymet.

Veckningen av de långa aminosyrakedjorna till proteiner med en mycket bestämd form styrs till stor del av den hydrofoba effekten. Fel på en enda aminosyra i den långa sekvensen kan göra att proteinet inte får rätt form och därför inte fungerar som det ska i kroppen.

Den vanliga tvättmekanismen hos tvål, tvättmedel eller diskmedel är också ett resultat av den hydrofoba effekten. Fettpartiklar bakas in av de detergentmolekylerna vars opolära svansar löser sig i fettet med de polära huvudena pekande utåt mot vattenlösningen. Fettpartiklarna blir helt täckta av detergenten så att det liknar en ryamatta.

Termodynamik och hydrofob effekt

Inom termodynamiken finns två drivkrafter för kemiska förändringar. Det ena är strävan mot lägsta energi, det andra strävan mot högsta entropi.

Ett system går mot lägre energi när starka bindningar skapas. Exempel är vätebindningarna mellan vattenmolekylerna. Om bindningarna mellan vattenmolekylerna bryts, till exempel genom att andra molekyler lägger sig i vägen, så ökar systemets energi. Det krävs nämligen energi att sära på vattenmolekylerna. Detta går dock tvärtemot systemets tendens att minimera sin energi. Strävan mot minimering av energin gynnar den hydrofoba effekten.

Dock är det så att entropin, som kan beskrivas som graden av oordning, ökar när olika molekyler blandas. Den normala tendensen för system är att gå mot större oordning (högre entropi). Strävan mot ökad entropi motverkar därför den hydrofoba effekten.

Temperaturen är också en faktor som har betydelse. Ju varmare det är, desto häftigare är molekylrörelserna. Ju kraftigare molekylrörelserna är, desto större tendens är det att molekylerna ska blandas med varandra. Ökad temperatur medför därför minskad hydrofob effekt. Det går också att förklara med att när tillgången på energi är hög, så drivs systemet mot en högre energi.

Drivkraften bakom de kemiska reaktionerna kan sammanfattas med Gibbs energi, som också benämns fri entalpi:

ΔG = ΔH - T·ΔS, där

G = Gibbs energi (J)
H = entalpi (systemets inre energi + produkten p·V) (J)
S = entropi (J K–1)
T = absolut temperatur (K)
Δ anger en förändring av ...

Den spontana reaktionsriktningen är när ΔG < 0. Negativa värden på ΔH och positiva värden på ΔS garanterar spontan reaktionsriktning. Ökande temperatur T förstärker effekten av ΔS.

Polaritet

I kemiska föreningar delas elektroner mellan atomerna som ingår i föreningen. Olika grundämnen har olika förmåga att attrahera elektronerna. Denna egenskap kallas elektronegativitet. Generellt sett har metaller låg elektronegativitet och ickemetaller hög elektronegativitet. Tittar man på ickemetallerna så är elektronegativiteten högst hos kväve (N), syre (O) och fluor (F). Lägst elektronegativitet, dvs. de mest elektropositiva grundämnena, finns i grupp 1 nedtill i periodiska systemet.

Polaritet hos molekylföreningar

Elektronegativitet förskjuter elektronmolnet i molekylen

Molekylföreningar är ämnen där ickemetaller har bundits till varandra. Bindningarna är kovalenta bindningar, så kallade elektronparbindningar. Elektronparen bildar elektronmoln som binder samman de två atomerna i bindningen. På grund av olika elektronegativitet hos de olika atomslagen, så förskjuts elektronmolnet mot det mer elektronegativa atomslaget. Om till exempel syre och väte bind till varandra, så är elektronmolnet förskjutet mot syre på grund av dess höga elektronegativitet.

I vätefluorid (HF) är fluor den mer elektronegativa atomen till höger.
CC Benjah-bmm27

Elektronerna är bara förskjutna i bindningen, men flyttar inte över helt och hållet. Men förskjutningen av elektronmolnet gör att en del av molekylen kan vara mer negativ. Eftersom den totala laddningen för en molekyl är noll, så finns motsvarande positiva laddning på den atom som har lägre elektronegativitet. Man säger att bindningen är polär.

Molekylen blir en dipol

Den polära bindningen kan göra att molekylen som helhet blir polär. En sådan molekyl kallas för dipol. Exempelvis är vätefluorid en dipol där fluoret har ett negativt laddningsöverskott (rött) och vätet ett positivt (blått).

Vatten är ett starkt polärt ämne på grund av syrets höga elektronegativitet.
CC

Ett annat exempel är vattenmolekylen där syret har ett negativt laddningsöverskott och vätena ett positivt. Här är det två bindningar till syret, en till vardera väteatomen. Den negativa laddningen på syret är därför summan av de positiva laddningarna på vätena. På grund av att den är vinklad är vattenmolekylen en dipol med den negativa änden vid syret och den positiva mitt emellan väteatomerna.


I koldioxid (CO2, O=C=O)är båda bindningarna mellan kolet i mitten och syret i änden polära, men motsatt riktade. Molekylen som helhet blir därför opolär.
CC
Symmetri kan släcka ut polariteten hos bindningarna

Koldioxid innehåller bindningar mellan kol och syre. Syreatomerna i var sin ända är mer elektronegativa än kolatomen i mitten. Bindningarna är alltså polära.

Koldioxid är en rak molekyl, till skillnad från vattenmolekylen. Dessutom är den polära bindningen mellan kol och syre i den ena änden motriktad motsvarande bindning i den andra änden. De motsatt riktade bindningarna släcker ut varandras polaritet, så att molekylen som helhet blir opolär, trots att de ingående bindningarna är polära.

Detta är exempel på att man måste känna till den tredimensionella strukturen hos en molekyl för att veta om den faktiskt är polär.

I kvävgas (N2) är båda atomerna lika elektronegativa. Bindningen mellan atomerna är därför opolär.
CC
En bindning mellan samma atomslag är opolär

Mellan olika atomslag finns det alltid en viss skillnad i elektronegativitet. Skillnaden kan vara stor eller liten, men inga atomslag av två olika grundämnen har exakt samma egenskaper. Däremot är två atomer av samma atomslag exakt likadana. Det betyder också att bindningen mellan dem är helt opolär. Exempel på sådan molekyl är kvävgas.


Förening mellan metall och ickemetall

I en kristall natriumklorid är den positiva Na+-jonen (lila) omgiven av negativa Cl-joner (grön) och vice versa.
CC Benjah-bmm27
Joner är alltid polära

I föreningar mellan metall och ickemetall är skillnaden i elektronegativitet så stor att en eller flera elektroner hoppat över helt och hållet från metallen till ickemetallen. Kvar blir då positiva metalljoner och negativa ickemetalljoner. Polär betyder ”laddad”. Det innebär att joner, som ju alltid har en laddning, alltid är polära.

Ett typiskt exempel på en jonförening är natriumklorid, dvs. vanligt koksalt. Saltkristallerna är uppbyggda av tätt sammanpackade positiva natriumjoner och negativa kloridjoner. Varannan jon är positiv och varannan negativ för att plus- och minusladdningar ska komma så nära varandra som möjligt. Positiv och negativa laddningar attraherar nämligen varandra.

Några föreningar mellan metall och ickemetall är gränsfall

Några metaller är inte så elektropositiva, dvs. deras elektronegativitet är inte så låg. De finns i periodiska systemen i gränsområdet mellan metaller och ickemetaller. Halvmetallerna är sådana, men även några som betecknas som metaller är ändå inte så elektropositiva.

Ett sådant exempel är silver (Ag). När silver och klorid reagerar till silverklorid (AgCl), så är skillnaden i elektronegativitet för liten för att det ska bildas joner. Men bindningen är ändå starkt polär. Därför är bindningen i silverklorid polär kovalent. Silverklorid är visserligen ett polärt ämne, men inte så starkt polärt. Lösligheten i vatten är därför dålig.

material på avancerad nivå kommer att läggas in här

Ytspänning

Vattnets ytspänning är hög

Vatten är exempel på ett ämne med hög ytspänning. Det beror på att attraktionskrafterna mellan vattenmolekylerna är ovanligt stora. Vätebindningen mellan syret i en molekyl och väteatomen i en annan närliggande molekyl är nämligen stark.


Ytspänningen är en följd av att attraktionskrafterna i gränsskiktet är riktade inåt.
"Wasser in Tropfen und an der Phasengrenze" av Booyabazooka" (CC BY)

Ytspänningen visar sig i gränsskiktet

Attraktionskrafterna mellan molekylerna får vätskan att hålla samman. Inne i vätskan verkar attraktionskrafterna åt alla håll eftersom varje molekyl är omgiven på alla sidor av andra molekyler som den attraherar.

I gränsskiktet mellan vattnet och luften är bindningarna mycket svagare, så svaga att de oftast är försumbara. Luftens molekyler kan nämligen inte bilda de starka vätebindningarna. Dessutom är avståndet mellan luftmolekylerna stort, vilket innebär att vattnet inte kan binda till så många luftmolekyler. Bindningarna är dessutom mycket kortvariga. De existerar bara i ett mycket kort ögonblick då luftmolekylen kolliderar med vattenytan.

Det är skillnaden i energi mellan vattenmolekylerna i vätskeytan (högre energi) och molekylerna i vätskans inre (lägre energi) som är själva ytspänningen. Ytspänningen är alltså ett mått på den energi som krävs för att skapa fasgränsen mellan vätskan och gasen.


Ytspänning i en droppe.
Bild: Svante Åberg, Sofie Wallin

Ytspänning i en droppe

De röda pilarna visar krafterna som håller samman vattenmolekylerna i en droppe. Nettokraften (summan av krafterna) visas med blå pil.

I droppens inre verkar krafterna åt alla håll ungefär lika mycket. Krafterna tar därför ut varandra så att nettokraften blir nästan noll.

I vattenytan finns bara krafter som verkar i ytan och mot droppens inre. Nettokraften pekar därför mot droppens inre. Det verkar som om vattnet har en tunn hinna, ytspänning. Ytspänningen gör att droppen får en rund form.



Ytspänning i en plan vätskeyta.
Bild: Svante Åberg, Sofie Wallin

Ytspänning i en plan vätskeyta

Om vattenmängden är större flyter vattnet ut till en plan yta. Det beror på att vattnets tyngdkraft är större än ytspänningens sammanhållande krafter. Ytspänningen finns dock kvar som en tunn hinna på vattenytan. Det är den som gör att skräddare (insekter) kan springa på vattenytan utan att sjunka.

Energinivån är högre hos molekylerna i vätskeytan

Bindningsenergier sänker molekylernas energinivå. Det kan man förstå när man tänker på att det krävs arbete för att slita loss en molekyl från de andra molekylerna i vätskan. Eftersom molekylerna i vätskeytan binder färre grannmolekyler, så sänks deras energi inte lika mycket som molekylerna längre in. Molekylerna i ytan ligger på en högre energinivå. Det är denna energiskillnad som är ytspänningen. Ytspänning mäts i enheten energi per ytenhet (J/m2).

Men energi kan också mätas som det arbete som krävs att skapa vätskeytan. Till exempel krävs det arbete att blåsa upp en såpbubbla, även om det är lite. Om man tar bort munnen från blåsröret innan bubblan har lossnat, så drar såpbubblan ihop sig igen. Det finns alltså en spänning i vätskeytan. Ytspänningen kan därför också anges som kraft per sträcka (N/m), ungefär som den kraft som krävs att sträcka ett gummiband.

Wilhelmyplatta


Wilhemyplatta
"Wilhelmy plate" av Vincent Émyde (CC BY)

Wilhelmyplattan används för att mäta ytspänningar. Principen bygger på att när plattan kommer i kontakt med vätskeytan, så väts plattan av vatten som stiger en bit uppför plattan. Vattnet stiger på grund av attraktionskrafterna mellan materialet i plattan och molekylerna i vätskan.

Plattan är upphängd i en känslig våg. Beroende på hur högt vattnet väter plattans sidor blir blir tyngden olika. Ju högre ytspänningen är, desto högre stiger vattnet och desto större kraft kan avläsas på vågen. Eftersom man väger tyngdökningen, så kallas konstruktionen för en ytspänningsvåg.

Wilhelmyplattor tillverkas av material som väts effektivt och ger liten kontaktvinkel θ. Materialet i plattan är vanligen platina i kommersiella instrument, men det går också bra med papper med goda vätegenskaper.

Vätskor med hög ytspänning stiger högt på plattan och tynger därför ned plattan mera. Vatten är ett exempel på ett ämne med särskilt hög ytspänning. Vattnets ytspänning kan sänkas effektivt med hjälp av några droppar diskmedel. Diskmedelsmolekylerna lägger sig på vattenytan och bryter attraktionskrafterna som råder mellan vattenmolekylerna. Resultatet blir att vattnet inte väter plattan lika bra och inte stiger lika högt.

Krafterna som verkar på ytspänningsvågen

Ytspänningsmätningar enligt principen för Wilhelmyplattan bygger på att vätningen av plattan (räknat i tyngdkraft) är linjärt beroende av ytspänningen.

Den nedåtriktade kraften på en platta som sänks ned i en vätska kommer dels från plattans tyngd, ρplattagLBT, dels från tyngden av den vätska som kryper uppför ytan på plattan, 2γ(T+B)cos(θ). Från detta ska dras lyftkraften från den undanträngda vätskan, ρvätskagHBT.


Wilhelmyplatta för mätning av ytspänning
Svante Åberg
Variablernas betydelse är följande:
γ = ytspänning
ρ = densitet
g = tyngdaccelerationen = 9.81 N/kg
L = plattans längd
B = plattans bredd
T = plattans tjocklek
H = djupet som plattan sänkts ned
θ = kontaktvinkel mellan vätskan och plattan
Δ betecknar en differens

Krafterna som verkar på Wilhelmyplattan balanserar varandra.
Svante Åberg

Kontaktvinkeln

Kontaktvinkeln θ mellan vätskan och plattan närmar sig 0 när vätskan väter plattan idealt. Wilhelmyplattor tillverkas av material som ger mycket liten kontaktvinkel. När ytspänningen sjunker så ökar kontaktvinkeln.

Egentligen bestäms kontaktvinklarna av de energier som är inblandade när plattan, vätskan och luften kommer i kontakt med varandra. De tre krafter som dessa energier (platta-vätska, vätska-luft, luft-platta) ger upphov till kan representeras av tre vektorer som precis balanserar varandra.

Krafterna som verkar på Wilhelmyplattan balanserar varandra. När kontaktvinkeln ökar på grund av minskande ytspänning, så minskar den komponent av kraftvektorn som drar nedåt. Tyngden som verkar på vågen blir då mindre.

Ordnade strukturer hos amfifiler

Amfifiler

hydrofil = vattenälskande
hydrofob =vattenskyende

En amfifil är en molekyl med en hydrofil och en hydrofob del. SDS (natrium dodecyl sulfat) är ett exempel på en amfifil. Sulfonatgruppen med natriumjonen (till höger) är vattenälskande medan den långa kolvätekedjan är vattenskyende. SDS är mycket vanlig i diskmedel.


Natrium ddodecyl sulfat (natrium lauryl sulfat).

Andra namn för amfifiler är tensider och detergenter. Tensid syftar på förmågan att sänka ytspänningen, detergent syftar på förmågan att lösa smuts.

Amfilen orienterar sig med hjälp av sin vattenälskande och vattenskyende del


Hinnan på en såpbubbla stabiliseras av monolager av amfifiler. Överskottet av amfifiler bildar miceller i lösningens inre.
Bild: Svante Åberg

Det polära "huvudet" på amfifilen binder till vatten. Därför lägger sig amfifilen så att huvudet är i kontakt med vatten, men den opolära svansen undviker kontakten med vatten. Det finns olika sätt att åstadkomma detta.

Ett sätt är att lägga sig på vattenytan med svansarna pekande upp mot luften. Då får man ett monolager av amfifilen på vattenytan. Även en liten mängd amfifil räcker för att täcka en stor vattenyta. Amfifilen som lägger sig på vattenytan bryter bindningarna mellan vattenmolekylerna som ligger i vattenytan. Det har effekten av ytspänningen sänks.

När hela vattenytan är täckt, så måste överskottet av amfifilen lösa sig i det inre av lösningen. För att undvika kontakten med vatten bildar amfifilen miceller. En micell är en anhopning av amfifila molekyler som gömmer sina vattenskyende svansar i micellens inre och vänder de vattenälskande huvudena utåt mot den omgivande vattenlösningen.

När du blåser såpbubblor, till exempel med en tvållösning, så bildas en tunn hinna av tvållösningen. Den ytspänningssänkande effekten gör hinnan stabilare. På ytan av hinnan bildas monolager, både på utsidan och insidan. Du kan vara säker på att tvållösningen är övermättad så det även finns miceller i lösningen.

Även om hinnan är väldigt tunn, så är den tillräckligt tjock för att det ska finnas lösning mellan dess ytor. Tvållösningen tenderar att sjunka mot såpbubblans nedre del på grund av tyngdkraften. Då minskar hinnans tjocklek. När den blir så tunn att de två monolagren kommer i kontakt med varandra, så brukar bubblan spricka.

Energiminimering hos amfilier i lösning

Alla system strävar mot sin lägsta energi där de är stabilast. Det åstadkoms genom att bindningar skapas mellan molekylerna. Ju starkare bindning, desto högre bindningsenergi. Att en stark bindning ger lägre energi hos systemet kan man förstå när man tänker på det krävs energi för att bryta en bindning, dvs. man måste tillföra den energi som bryter bindningen.

Det polära "huvudet" på amfifilen bidrar till att göra den vattenlöslig. Genom att binda till vatten minskar amfifilen sin energi i lösningen. Alla system strävar mot sin lägsta energi där de är stabilast. I en vattenlösning orienterar sig därför amfifilen med det polära huvudet mot vattnet.

Däremot är den opolära svansen vattenskyende. Det är inte så att svansen stöter bort vatten, men i konkurrensen om att skapa bindningar så vattenmolekylerna binder vattenmolekylerna varandra i stället för att binda till de opolära svansarna. Bindningsenergin mellan två vattenmolekyler är nämligen mycket större än mellan en vattenmolekyl och en opolär svans på amfifilen. Att vatten binder andra vattenmolekyler är en följd av systemets tendens att minimera sin energi.

Bildning av ett monolager på vattenytan


Hinnan på en såpbubbla stabiliseras av ett monolager av amfifiler. Överskottet av amfifiler bilda miceller i såplösningens inre.
Bild: Svante Åberg

En amfifil som sätts på en vattenyta sprider sig snabbt över hela ytan. Det är en mycket snabb process som tar bråkdelen av en sekund. Att processen är spontan och snabb visar att drivkraften bakom spridningen är stark.

Ett mått på denna drivkraft är ändringen av Gibbs fria energi ΔG. Bakom ΔG ligger dels strävan efter lägsta möjliga energi hos systemet, dels att entropin ska maximeras.

Systemets energi minskar på grund av bindningarna mellan det polära ”huvudet” på amfifilen och vattenmolekylerna. Samtidigt pekar den opolära svansen pekar upp i luften, bort från vattnet. Bindningsenergin mellan det polära huvudet och vattenmolekylerna är ganska stark. Att det handlar om en sänkning av systemets energi kan man förstå när man tänker på att man måste tillföra arbete för att slita loss amfifilen från bindningarna med vattenmolekylerna.

Spridningen av amfifilen över vattenytan ökar systemets entropi. Entropi är ett mått på ”oordning”. Ordning är när amfifilen och vattnet är på var sin plats, oordning när de ”blandas”. Även spridningen av amfifilerna över en större yta innebär en typ av blandning eftersom de amfifila molekylerna inte lägre är sammanpackande på en plats.

Den spontana reaktionen innebär att Gibbs fria energi minskar, dvs. ΔG < 0. Även sänkningen av ytspänningen som sker när amfifilen tillsätts är ett mått på att systemets energi minskar.

Languir-Blodgett teknik


Ett kommersiellt tråg för Lagmuir-Blodgett teknik att ta mätvärden på ytspänningen som en funktion av arean.
"Langmuir-Blodgett Trough" av Jyrkorpela" (CC BY-SA 4.0)

En amfifil som sätts på vattenytan sprids över hela den tillgängliga arean. Om man bara har tillsatt en liten mängd, så blir det glest mellan molekylerna. Det är faktiskt möjligt att maka ihop molekylerna så att de trängs samman på en mindre yta. Då ökar ytkoncentrationen av amfifilen.

Langmuir-Blodgett tekniken tillämpar denna princip att kunna variera ytkoncentrationen av amfifiler. Man använder ett tråg som är fyllt med vatten till brädden, och ytterligare lite till. En ribba som ligger på tråget kan förflyttas så att ytan minskar. Bilden till höger visar på ett kommersiellt Langmuir-Blodgett tråg.

Samtidigt som lagret av amfifiler pressas samman, så ökar utspänningen. Det beror på att entropin ökar när molekylerna packas samman. När lagret packats så att täckningen blir precis 100 %, så ökar ytspänningen plötsligt snabbare. I Langmuir-Blodgett tekniken så mäter man ytspänningen som en funktion av arean hos monolagret. Knixen på grafen man får visar när man fått exakt ett monolager med täckningen 100 %.

Om man vet hur många mol amfifil man har satt på vattenytan och hur stor arean är när man fått ett perfekt monolager, så är det enkelt att räkna ut hur stor en molekyl av amfifilen faktiskt är. Det man får fram är tvärsnittsarean hos amfifilen där den står packad på ände med huvudet nedåt och svansen uppåt.

Många anfifiler är i fast form vid rumstemperatur. Ett typexempel är stearinsyra. För att kunna sprida den på vattenytan löser man först upp en känd mäng i eter. Sedan sprider man lösningen på vattentytan. Lösningen sprids blixtsnabbt över hela ytan. Sedan avdunstar etern. Kvar blir amfifilen. Sedan kan man göra sina mätningar på vanligt sätt.

Olika strukturer med amfifiler


Tvålmolekyler bildar monolager, miceller och packar in fettpartiklarna så att de blir vattenlösliga.
Bild: Svante Åberg

När du tvättar dig med två finns ett monolager av tvål på vattenytan, miceller i själva tvållösningen, men dessutom fettpartiklar inbäddade i amfilen så att de får ett vattenlösligt ytlager. Tvålmolekylernas opolära svansar är fettlösliga och löser sig i fettet. Det polära huvudet pekar i stället ut mot vattenlösningen. Eftersom ytan på på den inbäddade fettpartikeln är vattenlöslig, så blir hela fettpartikeln vattenlöslig. Det gör fettet lätt att skölja bort.

Amfiflier kan också bilda bilager, dvs. dubbla lager där de vänder sina polära huvuden utåt mot vattenlösningen och sina opolära svansar inåt mot mitten av bilagret. Denna konstruktion är helt avgörande för livet på jorden. Det är den konstruktionen som skapar cellväggarna i kroppens celler. Fosfolipider är de vanligaste byggstenarna i cellmembranen.


Biologiska cellmembran är uppbyggda av amfifiler i dubbla lager, så kallade bilager.
Bild: Svante Åberg

Det normala är att det först bildas monolager på vattenytan. När den är helt täckt av amfifiler och det inte finns mera plats, så börjar det bildas miceller i vattenlösningen. Den koncentration av amfifiler som precis är på gränsen att miceller ska bildas kallas kritisk micellkoncentration (Critical Micelle Concentration, CMC). Om koncentrationen av amfilfil ökas på ytterligare kommer man till slut till en punkt då det inte ryms fler miceller i lösningen. Då börjar det bildas ännu mer komplexa strukturer med amfifiler i form av tredimensionella nätverk. Dessa kan få många varierande former.

Tvätt och rengöring

Smuts innehåller ofta feta ämnen, var sig det är matrester på tallriken eller fläckar på kläderna. Fetter har mycket låg löslighet i vatten. Det är därför svårt att få rent genom att bara tvätta i vatten.

Men om man tillsätter disk- eller tvättmedel, så blir det stor skillnad. Det finns flera namn för denna typ av ämnen:

amfifil = ämne med en hydrofil och en hydrofob del
detergent = ämne som rengör
tensid = ämne som sänker ytspänningen
ytaktivt ämne eller surfaktant = ämne som lägger sig i fasgränsytor

Disk- och tvättmedelsmolekyler är amfifiler


Detergentmolekylerna bäddar in fettpartiklar så att de får en hydrofil yta. Då blir de "vattenlösliga" och kan sköljas bort.
Bild: Svante Åberg

Gemensamt för sådana molekyler är att de dels har en hydrofob (vattenskyende) del, ofta i form av en kolvätekedja, dels en hydrofil (vattenälskande) grupp i andra änden. Den hydrofoba svansen är fettlöslig samtidigt om det hydrofila huvudet är vattenlösligt.

Amfifilen är ytaktiv

Detergenten sätter sig spontant i gränsskiktet mellan fett och vatten. Då hamnar den fettlösliga delen i det opolära fettet samtidigt om den vattenlösliga delen har kontakt med det polära vattnet.

Det leder till att fettpartiklar bäddas in i ett lager av amfifilen där molekylernas polära huvuden pekar ut mot vattenlösningen.

Amfifilen gör fettpartiklarna "vattenlösliga"


En dispersion (emulsion) av fettpartiklar i vatten stabiliseras av emulgeringsmedlet, som är ett ytaktivt ämne.
Bild: Svante Åberg

Inbäddade fettpartiklar med en hydrofil yta kan börja sväva i vattenlösningen. Det handlar inte om äkta löslighet eftersom blandningen inte är på molekylnivå, utan med större partiklar. Varje fettpartikel utgör en egen fas skild från vattenfasen.

En sådan blandning av olösliga partiklar i en vätska kallas dispersion. Ett annat namn är emulsion. Vid tvättprocessen är fettpartiklarna små droppar medan vattenlösningen är en kontinuerlig fas som omger fettpartiklarna.

Mekanisk bearbetning underlättar tvättprocessen

Det krävs att fettpartiklarna är små för att man ska få en dispersion. Mekanisk bearbetning slår sönder fettet i mindre delar. Då kommer amfifilmolekylerna åt att bädda in fettpartiklarna.

Fyra typer av detergenter

Detergenter är amfifiler med en opolär del och en polär.

Den opolära "svansen" är alltid ett kolväte, eller möjligen ett par kolvätekedjor. Kolväten är typiskt opolära ämnen som skyr vatten. Ju längre kolvätet är, desto mer opolära egenskaper får molekylen som helhet. Vanligtvis är kolvätekedjan ganska lång.


Klasser av ytaktiva ämnen: icke-joniska, anjoniska, katjoniska och zwitterjoniska
"Tenside haben hyrophile und hydrophobe Enden" av Roland.chem" (CC BY-SA 3.0)

Det polära "huvudet" kan vara av olika typer. På tvättmedels- eller diskmedelsförpackningen brukar den ungefärliga sammansättningen av de olika typerna vara angiven.

Icke-joniska detergenter

Icke-joniska detergenter har en polär grupp som inte är en jon.

Ett vanligt exempel är PEG, polyetylenglykol, som har formeln H−(O−CH2−CH2)n−OH. OH-gruppen är oladdad, men starkt polär på grund av att den höga elektronegativiteten hos syreatomen attraherar elektronmolnet från väteatomen så att syreatomen får en negativ och väteatomen för en positiv nettoladdning.

Anjoniska detergenter

Anjoniska detergenternas polära grupp är en negativ jon. Typiska detergenter är alkylbensensulfonater med den allmänna formeln R–C6H4–SO3, där R är en kolvätekedja.

Exempel är natriumsaltet av dodekylbensensulfonat, C12H25-C6H4-SO3Na.

Katjoniska detergenter

Katjoniska detergenter liknar anjoniska sådana, men den polära gruppen utgörs i stället av en positiv jon. Jonen kan vara ett ammoniumsalt (R-NH4+) eller ett kvarternärt ammoniumsalt (R4N+).

Zwitterjoniska detergenter

En zwitterjon är en positiv och en negativ jon på samma molekyl. Den katjoniska delen är en primär, sekundär eller tertiär amin eller en kvaternär ammonium-katjon. Den anjoniska delen är ofta sulfonat eller ammonium-karboxylat, men det finns många varianter.

Litteratur

  1. Structure of the Egg, University of Illinois
    http://www.urbanext.uiuc.edu/eggs/res16-egg.html (2006-02-27)
  2. Egg Structure and composition, Golden Egg Farms, Western Australia http://www.goldeneggs.com.au/nutrition/what_is_an_egg.html (2006-02-27)
  3. Science of Eggs, The Accidental Scientist
    http://www.exploratorium.edu/cooking/eggs/eggscience.html (2006-02-27)
  4. The Science of Boiling an Egg, University of Exeter
    http://newton.ex.ac.uk/teaching/CDHW/egg/ (2006-02-27)
  5. A Dozen Egg-speriments, Alberta Egg Producers
    http://www.eggs.ab.ca/kids/Egg%20Science/splash.htm (2006-02-27)
  6. Homemade Dishwasher Detergent , The Dollar Stretcher, Inc.
    http://www.stretcher.com/stories/02/02dec09b.cfm (2006-05-29)
  7. Fläckar, Grumme
    http://www.grumme.nu/tvatt/flackar.asp (2006-02-27)
  8. Soaps and Detergents: Products and Ingredients, The Soap and Detergent Association (SDA)
    http://www.cleaning101.com/sdalatest/html/soapproducts1.htm (2006-05-29)
  9. Soaps and Detergents: Chemistry, The Soap and Detergent Association (SDA)
    http://www.cleaning101.com/cleaning/chemistry/ (2006-05-29)
  10. Soaps, Detergents and Cleaning, CSU Stanislaus Science Web
    http://science.csustan.edu/nhuy/chem1002/soapexp.htm (2006-05-29)
  11. Detergent Chemistry Information Page, Laundry Alternative
    http://www.laundry-alternative.com/detergent_chemistry.htm (2006-05-29)
  12. How Do Detergents Clean?, About, Inc.
    http://chemistry.about.com/od/howthingswork/f/detergentfaq.htm (2006-05-29)
  13. What's in a modern detergent?, Chemistry in Action
    http://www.ul.ie/~childsp/CinA/Issue45/what_in_deterg.htm (2006-05-29)
  14. Detergent Chemistry: Terms and Definitions, Better Engineering Mfg., Inc.
    http://betterengineering.com/parts-cleaning-lab/detergent_terms.html (2006-05-29)
  15. Phosphatidylcholine and Related Lipids , William W. Christie, The Lipid Library
    http://www.lipidlibrary.co.uk/Lipids/pc/index.htm (2006-05-10)
  16. Main page - English, Wikipedia
    http://en.wikipedia.org/wiki/Main_Page (2006-04-11)
    • Phospholipid
      http://en.wikipedia.org/wiki/Phospholipid (2006-05-10)
    • Lecithin
      http://en.wikipedia.org/wiki/Lecithin (2006-05-10)
    • Choline
      http://en.wikipedia.org/wiki/Choline (2006-05-10)
    • Phosphatidate
      http://en.wikipedia.org/wiki/Phosphatidate (2006-05-10)
    • Lipid
      http://en.wikipedia.org/wiki/Lipid (2006-05-10)
    • Lipid bilayer
      http://en.wikipedia.org/wiki/Lipid_bilayer (2006-05-10)
    • Biological membrane
      http://en.wikipedia.org/wiki/Biological_membrane (2006-05-10)

Fler experiment


fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

kemisk bindning
Att vara kemisk detektiv
Bestäm CMC för diskmedel
Blandningar av lösningsmedel
Ett målande experiment - att rengöra en målarpensel
Frigolit i aceton
Färga ullgarn med svampar
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör hårt vatten mjukt
Gör kopparslanten skinande ren - med komplexkemi
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Håller bubblan?
Kemisk vattenrening
Kristallvatten i kopparsulfat
Lödtenn 60
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
Permanenta håret
Slime
Studsboll
Såpbubblor
Tag bort rostfläcken med det ämne som gör rabarber sura
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Tillverka papperslim
Trolleri med vätskor
Tvätta i hårt vatten
Undersök en- och flervärda alkoholer
Varför färgas textiler olika?
Vattenrening
Visa ytspänning med kanel

livsmedel
Bjud din jäst på mat
Blev disken ren?
Blå himmel och röd solnedgång
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Doft och stereoisomeri
Enzymaktivitet i ananas
Enzymkinetik för katalas
Flyter isen i matoljan?
Framställ låglaktosmjölk
Fruktköttet får solbränna
Fruktmörade proteiner
Gelégodis i vatten
Göra lim av kasein
Hur gör man kakan porös?
Hur moget är äpplet?
Hur mycket vatten finns i maten?
Höna med gummiben?
Innehåller koksaltet jod?
Kallrörd vaniljkräm och saliv
Kan man tapetsera med abborrar?
Koka Cola
Koka knäck
Maizena gör motstånd
Majonnäs - en emulsion
Massverkans lag och trijodidjämvikten
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Modellmassa av mjölk
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Pektin och marmeladkokning
Popcorn
Regnbågens färger med Rödkåls-indikator
Skär sig majonnäsen?
Släcka fett på rätt sätt
Stärkelse och vatten - fast eller flytande?
Syror och baser i konsumentprodukter
Testa C-vitamin i maten
Utvinna järn ur järnberikade flingor
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför svider det i ögonen när man skalar lök?
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Äta frusen potatis

vardagens kemi
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Bestäm CMC för diskmedel
Blev disken ren?
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Den omöjliga tvålen - den är preparerad!
Eld - varför brinner det?
Eldprovet
Enzymaktivitet i ananas
Enzymer i Tvättmedel
Ett gammalt tvättmedel, del 1: Salt ur björkaska
Ett gammalt tvättmedel, del 2: Tvål ur saltet
Ett målande experiment - att rengöra en målarpensel
Falu rödfärgspigment ur järnvitriol
Framställ en detergent
Framställ låglaktosmjölk
Fruktköttet får solbränna
Färga ullgarn med svampar
Färgämnen i M&M
Gore-Tex, materialet som andas
Gör din egen limfärg
Gör din egen tandkräm
Gör ditt eget läppcerat
Gör hårt vatten mjukt
Göra lim av kasein
Hockey-visir
Hur fungerar en torrboll?
Hur gör man kakan porös?
Hur moget är äpplet?
Hur smakar salmiak?
Håller bubblan?
Karbidlampan
Kemi i en brustablett
Kemisk vattenrening
Majonnäs - en emulsion
Maskrosen som krullar sig
Modellmassa av mjölk
Myggmedel - hur funkar det?
Målarfärgens vattengenomsläpplighet
När flyter potatisen?
Olja som lösningsmedel
Optiska Vitmedel
Osmos i ett ägg
Osynlig gas
Pektin och marmeladkokning
Pelargonens färg
Permanenta håret
Pulversläckare
Rengöra silver
Rostbildning och rostskydd
Skär sig majonnäsen?
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Superabsorbenter i blöjor
Surt regn
Syror och baser i konsumentprodukter
Såpbubblor
Tillverka din egen deodorant
Tillverka din egen glidvalla
Tillverka din egen tvål, del 1: Själva tvålen
Tillverka din egen tvål, del 2: Parfymera och färga tvålen
Tillverka ditt eget läppstift
Tillverka Falu rödfärg enligt gammalt recept
Tillverka papperslim
Tillverka rengöringskräm
Tvätta i hårt vatten
Utfällning av aluminium
Utvinna järn ur järnberikade flingor
Vad händer då något brinner?
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Vad är skillnaden mellan maskin- och handdiskmedel?
Varför färgas textiler olika?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför rostar järn och hur kan man förhindra det?
Varför slipper bilen varma yllekläder på vintern?
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Vattenrening
Visa ytspänning med kanel
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Ägget i flaskan
Ärg på en kopparslant
Äta frusen potatis