Utsaltning av alkohol i vatten

Tillhör kategori: aggregationsformer, fysikalisk kemi, jämvikt, syror och baser

Författare: Jasintha Åberg

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Frätande Använd skyddsglasögon 

Tid för förberedelse: 10 minuter

Tid för genomförande: 40 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Utföres med normal varsamhet

Svårighetsgrad: Kräver viss labvana

Introduktion

Experimentet är en färggrann illustration av hur man kan använda utsaltning för att påverka de intermolekylära krafterna och förändra lösligheten hos alkohol i vatten.

Riktlinjer

Experiment kan visas för en stor grupp av åskådare som en demonstration om stora provrör används, men passar också som elevförsök. Skala upp mängderna efter behov.

Den teoretiska bakgrunden gör att experimentet passar bäst på gymnasiet. Delförsök A eller C kan emellertid visas utan förklaring eftersom resultatet är överraskande och skapar intresse.

Delförsöken utförs i ordningsföljd. Det är möjligt att utföra bara delförsök A, A+B eller A+B+C och ändå behålla ett pedagogiskt upplägg.

Säkerhet

I experimentet används 2 M NaOH. Den är frätande och kan skada ögonen. Använd skyddsglasögon! Vid stänk i ögonen måste de omedelbart sköljas med vatten och under lång tid. Kontakta sedan läkare.

Överblivna kemikalier i experimentet kan spolas ned i vasken tillsammans med rikligt med vatten.

Materiel

Förarbete

Inget förarbete

Utförande

Delförsök A

  1. Ställ i ordning två provrör med kork.
  2. Till det första provröret sätter du följande:
    • 10 ml etanol
    • 10 ml vatten
    • några droppar BTB-indikatorlösning
    • en droppe 1M HCl
  3. Skaka om provröret och observera färg och form hos innehållet.
  4. Sätt några gram kaliumkarbonat till det andra provröret med kork.
  5. Häll över lösningen från första provröret till saltet i det andra provröret.
  6. Sätt på korken och skaka om.
  7. Låt stå några minuter.
  8. Observera färg och form hos innehållet. Varför blir det så?

Att fundera över:

Delförsök B

  1. Gör på samma sätt som i experiment A, men byt ut kaliumkarbonat mot natriumkarbonat i det andra provröret.
  2. Observera och diskutera frågorna ovan med motsvarande ämnen.

Delförsök C

  1. Gör på samma sätt som i experiment B men byt ut etanol mot 1-propanol i det första provröret.
  2. Observera och diskutera frågorna ovan med motsvarande ämnen.

Delförsök D

  1. Gör på samma sätt som i experiment C men byt ut natriumkarbonat mot natriumvätekarbonat (natriumbikarbonat) i det andra provröret.
  2. Blir det separation efter skakning?
  3. Tillsätt 5 ml av 2 M NaOH och skaka igen.
  4. Observera och diskutera frågorna ovan med motsvarande ämnen.
Innehållet i provrören
Bild: © Svante Åberg

Tips att underlätta förklaringarna till delförsöken

Förklaring

Experimentet illustrerar hur man kan påverka de intermolekylära krafterna i en lösning av alkohol och vatten så att de antingen bildar en homogen lösning eller separerar i två faser.

Delförsök A

Etanol i vattenlösning binder vattenmolekyler med vätebindningar. Kalium- och karbonatjonerna konkurrerar ut etanolen i kampen om att binda vattenmolekylerna. Därmed minskar lösligheten av etanolen så mycket att den bildar en egen fas. Detta benämns utsaltning av etanolen.

Vatten-saltlösningen är tyngre än etanolen. Vattenfasen hamnar därför underst. BTB färgar den lättare etanolfasen blå. Lösningen är basisk på grund av karbonatjonerna.

Delförsök B

Natriumkarbonat har lägre löslighet än kaliumkarbonat i vatten, vilket gör att en mättad lösning av natriumkarbonat har lägre jonstyrka. Jonerna binder inte upp tillräckligt med vatten för att få fasseparation. Vi har därför en enda homogen, blå lösning.

Delförsök C

Skillnaden gentemot experiment B är att etanolen bytts ut mot propanol. Propanolen är mindre polär än etanol och skillnaden mot vatten blir därför större. På grund av den större olikheten mellan vatten och propanol räcker natriumjonernas bindning till vattnet för att fasseparation ska uppstå.

Även denna gång hamnar den ofärgade vatten-saltlösningen underst och den blåfärgade alkoholen överst.

Delförsök D

Moment I)

Vätekarbonatjoner har bara en minusladdning (HCO3-) medan karbonatjonerna har två (CO32-). Vattnet binds därför inte upp tillräckligt starkt för att man ska få fasseparation.

Moment II)

När man tillsätter natriumhydroxid så övergår vätekarbonatet till karbonat: OH- + HCO3- → H2O + CO32-. När det nu finns tvåvärt negativa joner igen så är förhållandena som i experiment C, och man får åter fasseparation med ofärgad vatten-saltlösning nedtill och blåfärgad propanol upptill.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Förhållandena i experimentet

Färgen

Vid start har man satt en droppe HCl i provröret med vatten + alkohol + BTB. På grund av den sura miljön är BTB gul. I delförsöken ingår karbonat eller vätekarbonat. Dessa salter är basiska. När lösningen av vatten + alkohol + BTB blandas med det basiska saltet så färgas BTB blå.

Faserna

Fasseparation uppstår om vattnet och alkoholen inte är tillräckligt lösliga i varandra. Lösligheten följer principen "lika löser lika". Till en del är vatten och alkohol lika. Båda innehåller OH-grupper som är starkt polära. Formeln för vatten är H-OH och för en alkohol CH3-(CH2)n-OH. Men alkoholen innehåller också en opolär kolvätekedja. Alkoholen är därför löslig i vatten, men inte under vilka förhållanden som helst.

Det som får alkoholen att vara löslig i vatten är attraktionen mellan alkoholens OH-grupp och vattenmolekylen. Mellan dem bildas en vätebindning. Om det finns joner i vattnet attraheras vattenmolekylerna till dem. Det blir konkurrens mellan alkoholen och saltjonerna konkurrerar om vattenmolekylerna. Om saltet "vinner" så separerar vattnet och etanolen i två faser. I experimentet består den ena fasen består av en vattenlösning av saltet och den andra fasen av alkohol och BTB.

Även den negativa jonerna binder upp vattenmolekyler. Ju högre laddning jonen har, desto kraftigare binds vattnet upp. Karbonatjoner, CO32-, binder upp vattenmolekylerna effektivare än vätekarbonatjoner, HCO3-.

Indikatorer

En indikator är ett ämne som används för att indikera den kemiska miljön i en lösning. Vanligen handlar det om lösningens pH (pH-indikator), men det finns också redoxindikatorer som visar om miljön är reducerande eller oxiderande, komplexindikatorer som visar förekomsten av komplexbildande metalljoner, osv.

Indikatorn reagerar med det ämne den indikerar. En pH-indikator avger eller tar upp vätejoner, en redoxindikator reducerar eller oxiderar molekyler i lösningen, en komplexindikator binder eller frigör komplexbildande metalljoner.

För att indikatorn ska vara användbar måste den vara kraftigt färgad. Då räcker det att man tillsätter bara lite indikator, den ger tydlig färg i alla fall. För att indikatorns egna reaktioner inte ska påverka den kemiska miljön alltför mycket är det viktigt att den inte tillsätts i så stor mängd.

pH-indikatorns jämvikt

Indikatorn bromtymolblått
Bild: © Svante Åberg

pH är ett mått på halten av vätejoner. Sambandet mellan pH och vätejonhalten är pH = -log10[H+]. pH-indikatorn används för att ge en färgindikation på vilket pH som råder i lösningen.

En pH-indikator är i sig själv ett syra-baspar. Syraformen HI och basformen I- står i jämvikt med varandra. pH-indikatorns jämvikt kan skrivas

  HI     ⇄     H+    +     I- 
syraform
av indikatorn
  vätejon   basform
av indikatorn

Övriga syror och baser i lösningen förekommer i mycket större mängder och styr därför lösningens pH. pKI är det pH då indikatorn byter färg. Beroende på pH förekommer pH-indikatorn i sin syraform eller basform.

pHsyraformen HIbasformen I-
pH < pKI-2≈ 100 %≈ 0 %
pH = pKI= 50 %= 50 %
pH > pKI+2≈ 0 %≈ 100 %
generell formel
för varje pH
log10{[I-]/[HI]} = pH - pKI
Û
[I-]/[HI] = 10pH - pKI

I praktiken förekommer båda formerna av indikatorn bara om pH ligger inom intervallet pKI±2. Om pH = pKI så förekommer indikatorn till 50 % som HI och till 50 % som I-. Indikatorns färg är då blandfärgen av syraformen och basformen.

Olika indikatorer har olika omslagspunkter pKI. Till exempel har metylrött sitt färgomslag vid pH = 3,7 och fenolftalein vid pH = 9,4.


Bromtymolblått

Strukturen hos bromtymolblått visar
att den till stora delar är opolär.
Bild: © Svante Åberg

Bromotymolblått förkortas ofta BTB. Den har sitt färgomslag vid pH = 7,0. Under pH 7 är den gul, över pH 7 är den blå. Vid pH 7,0 har man hälften gul form och hälften blå form, vilket ger den gröna blandformen.

Syraformen av BTB är gul och basformen blå.

Molekylstrukturen för BTB är till stora delar opolär. Den löser sig därför lätt i något opolära lösningsmedel som t.ex. etanol. Lösligheten påverkas av formen. Den oladdade syraformen HI är mer opolär än den laddade basformen I-. Trots dess negativa laddning så ser man i experimentet att BTB:s basform ändå är mer löslig i alkohol än i en koncentrerad saltvattenlösning.

Lösningar

En homogen blandning av två eller flera ämnen, som utgör en enda fas, kallas en lösning. De olika ämnena i en homogen lösning kan inte särskiljas från varandra med ögat eller ens med mikroskop. Lösningen kan vara gasformig (t.ex luft som innehåller kväve och syre), flytande (t.ex etanol i vatten) eller fast (t.ex metallegeringar). I en lösning finns ofta ett av ämnena i större mängd än det andra. Man brukar säga att det ämne som det finns mest av är "lösningsmedel" och det som förekommer i mindre mängd kallas "löst ämne".

Polaritet och löslighet

Ett ämnes polaritet är ett mått på innehållet av elektriska laddningar. Joner är typiskt polära ämnen, men även molekyler med laddningsförskjutningar är polära.

Vissa molekylgrupper är särskilt polära. Det gäller t.ex. hydroxigrupper, -OH, och amminogrupper, -NH2. Andra molekylgrupper är särskilt opolära. Det gäller t.ex. alkylgrupper, -(CH2)n-CH3, och i ännu högre grad motsvarigheten med fluor, -(CF2)n-CF3.

Om både polära och opolära grupper ingår i en molekyl så är det antal och storlek på grupperna som avgör molekylens polära karaktär. Alkoholer innehåller både hydroxigrupp och alkylkedja. En lätt alkohol som etanol, CH3-CH2-OH, har en kort opolär kolvätekedja och dess polära OH-grupp dominerar därför egenskaperna. 1-propanol, CH3-CH2-CH2-OH, har en kolatom mer i alkylkedjan. Hydroxigruppen har därför relativt sett mindre betydelse och 1-propanol är därför något mer opolär än etanol.

På grund av sin lägre polaritet är 1-propanols löslighet i vatten därför sämre än etanols. Vatten är ju ett mycket polärt ämne och löslighetsregeln är "lika löser lika".

Vätebindning

Hydroxi- och amminogrupperna är inte bara polära utan har dessutom egenskapen att kunna vätebinda andra molekyler med ett fritt elektronpar. Syre och kväve (och likaså fluor) är starkt elektronegativa ämnen som drar till sig elektronerna från väteatomen så kraftigt att den blir praktiskt taget "naken". Därför kan en väteatom i -OH eller -NH2 komma väldigt nära det fria elektronparet i den andra molekylen. Det gör att bindningen blir avsevärt starkare än den annars skulle vara. Möjligheten till vätebindning mellan två olika ämnen ökar deras löslighet i varandra. Så är exemplet med etanol och vatten.

Saltlösningar

Jonerna omger sig av ligander

Kalium- och karbonatjoner är hydratiserade,
dvs. omges av skal av vattenmolekyler.
Bild: © Svante Åberg

En jon i en vattenlösning utövar en attraktionskraft på partiklar med motsatt laddning. Vattenmolekylen är visserligen oladdad som helhet, men den har en polaritet, dvs. laddningsförskjutning, inom sig. I vattenmolekylen H2O drar syret till sig elektronerna mera än vätena gör. Syret får ett negativt laddningsöverskott och vätena ett positivt. Metalljoner såsom kaliumjoner omger sig av vattenmolekyler som vänder sina syren mot centraljonen K+. På motsvarande sätt omger sig karbonatjoner av vatten som vänder sina väten mot centraljonen CO32-. Joner som omges av ett skal av vattenmolekyler sägs vara hydratiserade. De partiklar som binds till centralatomen kallas ligander, i detta fall vattenmolekylerna.

Jonstyrka

Räkneexempel på jonstyrka
Vi har 0,1 M K2CO3. När saltet löser sig får vi
K2CO3 → 2 Na+ + CO32-
I 0,1 M K2CO3 är därför koncentrationerna
[Na+] = 2·0,2 M = 0,2 M
[CO32-] = 0,1 M
Jonstyrkan blir I = ½[0,2 M·(-1)2 + 0,1 M·(-2)2] =
½[0,2 M + 0,4 M] = ½·0,6 M = 0,3 M

I experimentet binds vattenmolekylerna upp av saltjonerna. Ju mer koncentrerad saltlösningen är desto högre är dess jonstyrka. Men även saltjonernas laddning påverkar jonstyrkan. Med följande formel beräknas jonstyrkan:
I = ½Σcizi2 där
    I = jonstyrka
    ci = koncentration av jon i
    zi = laddning hos jon i

För envärda joner är jonstyrkan lika med koncentrationen för saltet, men ingår flervärda joner så blir jonstyrkan högre än saltösningens koncentration.

Jonstyrkan i de aktuella lösningarna

I experimentet tillsätts kaliumkarbonat, natriumkarbonat respektive natriumvätekarbonat i överskott, vilket leder till mättade lösningar. Uppgifterna på löslighet, molmassa och kemisk formel ger koncentrationen och jonstyrkan i en vattenlösning:

salt molvikt
(g/mol) 
löslighet
(g/100 g vatten) 
koncentration
(mol/dm3)
jonstyrka
(mol/dm3)
K2CO3  138,2 122 8,8 26,5
Na2CO3  106,0 30 2,8 8,5
NaHCO3  84,0 7,8 0,93 0,93

Faser

En fas är en avgränsad volym där sammansättningen av ämnen densamma. Dessutom är det fysikaliska tillståndet (gas, flytande eller fast) detsamma i hela volymen. Det finns alltså ingen gränsyta som särskiljer olika delar av innehållet i volymen. Den homogena blandningen (= lösningen) av vatten + etanol + BTB i experimentet är exempel på en fas.

Exempel på ett tvåfassystem är när man kokar vatten i en kaffepanna. En del av vattnet är flytande, vilket utgör den ena fasen. Ovanför vattnet i vätskeform finns vatten i gasform, dvs. vattenånga. Vattenångan utgör den andra fasen. I detta exempel är det aggregationsformen hos ämnet som skiljer mellan de två faserna. Det är lätt att se gränsytan (vattenytan) mellan faserna.

Ett annat exempel på tvåfassystem är en blanding av olja och vatten. Eftersom oljan inte löser sig i vattnet så bildas två skikt där oljan lägger sig ovanpå vattnet. Det blir en tydlig gränsyta mellan vattnet och oljan. Här är aggregationsformen lika i de två faserna, men ämnena är olika.

Faserna i experimentet

När kaliumkarbonat sätts till den
homogena lösningen av
surgjord etanol + vatten + BTB
får man fasseparation.
Bild: © Svante Åberg

Fotografiet till höger visar hur enfassystemet av vatten + etanol + BTB separerar till ett tvåfassystem när kaliumkarbonat tillsätts. Anledningen är att etanolens löslighet i vattnet minskar när kaliumkarbonatet binder upp vattenmolekylerna.

I den nedre färglösa fasen finns vatten + kaliumkarbonat. I den övre blå fasen finns etanol + BTB.

Kommentar: Noga räknat finns faktiskt lite etanol och BTB i den undre fasen och lite vatten och kaliumkarbonat i den övre, men det väsentliga är att sammansättningen av ämnen är radikalt olika i de vtå faserna.

Fler exempel på fasseparation

Man kan också göra tvärtom

Det finns en analogi till att påverka alkoholens löslighet i vatten genom utsaltning. Man kan också påverka ett salts löslighet i vatten genom att tillsätta alkohol. Det kan t ex användas för att fälla ut salt som bildats genom reaktion mellan syra + bas eller mellan syra + metalloxid. Detta är ett experiment man ofta gör på gymnasiet.

Utsaltning av proteiner och DNA

Separation av organiska ämnen ur en vattenlösning via utsaltning har används sedan länge tillbaka. Metoden används vanligen av biokemister, t.ex vid rening av proteiner. Svaga bindningar, som vätebindningar mellan organiska föreningar eller molekyler och vatten, bryts när saltet tillsätts.

DNA kan enkelt fällas ut genom utsaltning. Ett känt försök är att extrahera DNA ur t.ex. kiwi. Se experimentet DNA ur kiwiSkol-Kemi.

Golfströmmen drivs av utfrysta salter

Utfrysning är ett närliggande exempel. När havsvatten fryser blir isen nästan ren från salt. Det utfrysta saltet ökar på salthalten i det omgivande vattnet. Med högre salthalt följer högre densitet. Sådant vatten sjunker mot botten.

Denna process sker i gigantisk skala i Nordatlanten utmed Grönland och Labrador där havet ofta fryser och tinar om vartannat. Det sjunkande vattnet ersätts av ytvatten och på så vis fås vattencirkulation. Vattencirkulationen driver Golfströmmen som går genom hela Nordatlanten och för upp varmvatten till våra breddgrader. Tack vare Golfströmmen har vi ett relativt milt klimat som annars bara skulle förekomma långt söderut.

Fördjupning

Löslighet

När atomer eller molekyler av ett ämne blandas på atom-/jon-/molekylnivå med ett annat ämne, så säger man att ämnet löser sig. Både fasta, flytande och gasformiga ämnen kan gå i lösning på detta sätt. Ämnet som tar emot partiklarna som löser sig, och som förekommer i större mängd, kallas lösningsmedel.

Exempel på lösningar är:

En lösning behöver alltså inte vara en vätska. Det finns både fasta, flytande och gasformiga lösningar.

Begränsad löslighet

Ofta är lösligheten begränsad. Det har att göra med den jämvikt som uppstår mellan ämnet i lösning och samma ämne i ren form. Till exempel löser sig koksalt i vatten upp till 36 g per 100 ml (motsvarande 26 vikts-%) vid 20 °C.

Jonerna i den fasta natriumkloriden löser sig med jämn hastighet, vilket tenderar till att öka koncentrationen av löst ämne. Men den motsatta reaktioner sker också. Natrium- och kloridjonerna i lösningen faller ut som fast natriumklorid. Den hastighet med vilken saltet faller ut beror på hur ofta natrium- och kloridjoner stöter på varandra i lösningen. Därför ökar utfällningen av salt med koncentrationen i natriumkloridlösningen. Vid 26 vikts-% NaCl är utfällningen lika snabb som upplösningen av koksaltet. Då sker ingen nettoförändring. Man har en dynamisk jämvikt där lösningen är mättad, dvs. innehåller maximal mängd koksalt.

Obegränsad blandbarhet

Ibland är lösligheten obegränsad och det lösta ämnet och lösningsmedlet är fullständigt blandbara i alla koncentrationer. Exempel på detta är etanol i vatten. Vilken proportion av etanol och vatten du än blandar, så kommer du att få en homogen lösning, dvs. en enda fas. Du kommer inte att se någon fasgräns mellan ämnena.

Lösning av gasformiga partiklar i en annan gas har alltid obegränsad blandbarhet. Det beror på att i en gas så är partiklarna så långt ifrån varandra att de inte påverkas av några attraktionskrafter som tenderar att klumpa samman ämnena i aggregat. Alla atomer/molekyler rör sig helt fritt i gaslösningen.

Bindningskrafterna avgör lösligheten - "Lika löser lika"

När det finns ett löst ämne och ett lösningsmedel, så finns det tre alternativa bindningar som kan uppstå mellan partiklarna (atomerna/molekylerna/jonerna):

Man brukar använda en tumregel: "Lika löser lika". Det syftar på polariteten, dvs. laddningen hos partiklarna. Ämnen löser sig lättast i varandra om de är ungefär lika polära. Vi ska förklara hur detta kommer sig.

Vatten är en starkt polärt ämne. Visserligen är molekylen som helhet oladdad, men det finns en laddningsförskjutning så att syreatomen är negativ och väteatomerna positiva. Två vattenmolekyler binder varandra ganska starkt genom att syret i den ena molekylen lägger sig nära vätet i den andra vattenmolekylen. Den negativa och positiva laddningen attraherar varandra. Vatten binder alltså varandra ganska starkt.

Kolvätena i bensin är ett mycket opolära. Kolvätena är oladdade molekyler som inte heller har någon laddningsförskjutning inom sig i molekylen. Det gör att kolväten bara binder varandra svagt med hjälp av Londonkrafter (Van der Waals-krafter).

Ju starkare bindningen är, desto större chans är det att partiklarna ska klumpa sig samman. Vatten i blandning med bensin ger mycket dålig löslighet. Vattenmolekylerna klumpar samman sig med sina starka krafter och bildar en egen fas. Kolvätemolekylerna blir över och bildar en annan fas. Kolvätena bildar inte en egen fas på grund av attraktion mellan kolvätena, utan därför att de inte få vara tillsammans med vattnet. De blir så att säga ratade av vattenmolekylerna.

Om två ämnen inte har samma polaritet, men ändå inte skiljer sig åt alltför mycket, så får de en god löslighet även om den är begränsad. En möjlighet att lösa ett ämne är därför att använda lösningsmedel i flera steg. Om du till exempel har fått smutsig motorolja på händerna, så är det svårt att tvätta bort med tvål. Motoroljan är alltför opolär för att tvålen riktigt ska kunna lösa den. I ett första steg kan du då smörja händerna med margarin, som är opolärt. Oljan löser sig i margarinet. I nästa steg tvättar du bort margarinet med hjälp av tvål och vatten. Oljan som är löst i margarinet följer då med margarinet när det tvättas bort med vatten.

Utfällning

Utfällning är den process som gör att ett löst ämne övergår till fast form och bildar en egen, fast fas. Det ämne som bildar fast form kallas helt enkelt fällning. Vätskan som blir kvar kallas med ett finare ord för supernat.

Orsaken till att fällning bildas är alltid att lösligheten för ämnet överskrids. Men vad som gör att lösligheten överskrids kan bero på flera saker:

Det händer att de utfällda partiklarna är så små att de inte sjunker till botten inom rimlig tid. Då får man en suspension som känns igen på att den är grumlig. Men om man centrifugerar suspensionen, så kan man få fällningen att sjunka till botten. Ovanför finns då den klara lösningen.

material på grundnivå kommer att läggas in här

material på avancerad nivå kommer att läggas in här

pH-begreppet


pH-värden för några vanliga ämnen.
"pH scale" av OpenStax College" (CC BY 3.0)

pH är ett mått på surhetsgraden i en vattenlösning. Det som gör vattnet surt är vätejoner, H+. Vätejoner kommer från syror, såsom ättiksyra, svavelsyra eller kolsyra, men jonerna bildas inte förrän syran löser sig i vatten.

pH är definierat bara i vattenlösningar. Man kan alltså inte ange pH för till exempel en etanollösning, även om syran kan lösa sig i etanolen och avge vätejoner på liknande sätt som i vatten.

pH i vardagen

Det är vätejonerna som ger de sura egenskaperna hos lösningen. Till exempel är vätejoner frätande på många ämnen. Vätejonerna ger också en syrlig smak. Faktiskt är mycket av det vi äter mer eller mindre surt. Frukter innehåller fruktsyror av olika slag. Filmjölk innehåller mjölksyra och läsk innehåller kolsyra. Den syrliga smaken är faktiskt uppfriskande.

Vattenlösningar med högt pH innehåller väldigt lite vätejoner. De är basiska. Basiska livsmedel finns nästan inte. Undantag kan vara svagt basiska kakor bakade med bikarbonat eller lutfisk där det finns små rester av luten. Däremot är många rengöringsmedel starkt basiska. I basiska lösningar är halten vätejoner väldigt låg. I stället finns det gott om hydroxidjoner, OH.

pH-skalan

pH-skalan går från cirka pH 0 för starkt sura lösningar via pH 7 för en neutral lösning till cirka pH 14 för mycket basiska lösningar.

Vätejonerna (H+) står i jämvikt med hydroxidjonerna (OH) i vattenlösningen. Vätejoner och hydroxidjoner är som vågskålarna i en balansvåg. När det finns mycket av den ena finns det lite av den andra, och vice versa. Det väger jämnt vid pH 7, när vattnet är neutralt. Så är fallet i alldeles rent vatten.

pH-skalans koppling till koncentrationen av vätejoner

Halten av vätejoner kan variera mycket. I mycket sura lösningar är halten i storleksordningen 1 mol/dm3. I mycket basiska lösningar är halten väldigt låg, ned till cirka 0,00000000000001 mol/dm3. I en neutral vattenlösning är halten 0,0000001 mol/dm3.

För att slippa skriva så många siffror, så kan man uttrycka halterna med hjälp av 10-potenser. Då blir det på följande sätt:

lösning[H+] på vanligt sätt[H+] med 10-potenserpH
mycket sur1 mol/dm3100 mol/dm3 0
neutral0,0000001 mol/dm310–7 mol/dm37
mycket basisk0,00000000000001 mol/dm310–14 mol/dm314

Man använder hakparenteser för att ange att det handlar om koncentrationen av något. Koncentrationen av vätejoner betecknas då [H+].

Genom att definiera pH som exponentens värde med motsatt tecken, så kan vi hantera halter från suraste lösningen till den mest basiska utan att skriva så många siffror. I tabellen finns pH-värdet i kolumnen längst till höger.

När man skriver 10-potenser är exponenten ett mått på storleksordningen hos vätejonhalten. Varje minskning av pH med ett steg motsvarar en multiplikation av vätejonkoncentrationen med faktorn 10, och ökning av pH motsvarar en division av vätejonkoncentrationen med faktorn 10. Att låga pH ger hög halt av vätejoner beror på att man bytt tecken när man definierat pH.

På motsvarande sätt motsvarar 2 steg faktorn 100, 3 steg faktor 1000, och så vidare.

Beräkningar med pH och [H+]

Man får man pH-värdet ur vätejonkoncentrationen med följande formel:
pH = –log [H+]

Omvänt beräknar man vätejonkoncentrationen ur pH-värdet med följande formel:
[H+] = 10–pH

Formell definition av pH


Moln av motjoner bildas kring enskilda joner i lösningen.
"Ionenverteilung inLoesung" av Daniele Pugliesi" (CC BY 3.0)

I praktiken använder man koncentrationer av ämnen i lösningar när man räknar på kemiska jämvikter. Koncentrationen av vätejoner, [H+], stämmer väl med hur stor effekt vätejonerna har kemiskt när de deltar i kemiska reaktioner om lösningen är relativt utspädd. Men om koncentrationen är högre än cirka 0,1 mol/dm3, så börjar man se tydliga avvikelser mellan den faktiska kemiska effekten och den man förväntar sig utifrån koncentrationen.

Orsaken till att kemisk effekt och koncentration inte längre är proportionella vid höga koncentrationer är att det bildas moln av motjoner kring vätejonerna som påverkar deras möjlighet att delta i kemiska reaktioner. Detta beskrivs av Debye–Hückel i deras teori. De kom fram till en korrektionsfaktor som kallas aktivitetskoefficient.

Vätejonens kemiska aktivitet, som betecknas {H+}, får man genom att multiplicera jonkoncentrationen [H+] med aktivitetskoefficienten γ.


Aktivitetskoefficienten γ för lösningar med olika jonstyrkor.
"Debye-Hückel equation" av V8rik" (CC BY 3.0)

Vid låga koncentrationer är aktivitetskoefficienten γ = 1, men vid högre koncentrationer tenderar γ att vara mindre än 1.

Debye–Hückels teori för aktivitetskoefficienten γ bygger på lösningens jonstyrka. Om lösningen bara innehåller envärda joner, så är jonstyrkan lika med koncentrationen av saltet. Men om lösningen innehåller 2-värda, eller till och med 3-värda joner, så blir jonstyrkan betydligt högre. Då sjunker aktivitetskoefficienten betydligt mera.

Den formella definitionen av pH bygger på vätejonens aktivitet:
pH = –log {H+}, där {H+} = γ [H+]

Omvänt får man:
{H+} = 10–pH

Bromtymolblått, BTB

En pH-indikator som slår om vid pH 7

Bromtymolblått, eller BTB som man oftast säger, är den vanligaste pH-indikatorn i skolan. Den är gul i sura lösningar när pH är under 7 och blå i basiska när pH är över 7. Färgomslaget sker alltså vid pH 7 och färgen är en blandning av gult och blått som ser grönt ut.

Olika pH-indikatorer slår om vi olika pH, inte nödvändigtvis vid pH 7. Men BTB slår faktiskt om vid pH 7, vilket är mycket praktiskt. Färgomslaget börjar synas vid pH 6 då en svagt grönaktig nyans hos det gula visar sig. På motsvarande sätt är pH 8 en ungefärlig övre gräns för när färgomslaget kan skönjas. Men den rent gröna färgen när 50 % av BTB-molekylerna är gula och 50 % är blå har man vid precis pH 7,0. Det pH-värde då indikatorn fördelas med 50 % på de två färgerna anges som pKInd (kan även heta pKa). För BTB är alltså pKInd = 7,0. Andra indikatorer har andra pKInd-värden. Exempelvis har fenolftalein pKInd = 9,7.

BTB-molekylen är övervägande opolär

Strukturen hos bromtymolblått visar
att den till stora delar är opolär.
Bild: ÓSvante Åberg

Molekylstrukturen för BTB är till stora delar opolär. Den löser sig därför lätt i något opolära lösningsmedel som t.ex. etanol. Lösligheten påverkas av formen. Den oladdade syraformen HInd är mer opolär än den laddade basformen Ind- vilket gör att saltet NaInd (Na+Ind-) av BTB är mer vattenlösligt än syraformen.

När man bereder indikatorlösning från pulver av syraformen av BTB bör man börja med att lösa pulvret i t.ex. 2-propanol. När BTB har löst sig kan man sedan späda med lika mycket avjonat vatten till dubbla volymen. Det är svårt att lösa syraformen av BTB direkt i vatten.


Vatten

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.

Vattnets ovanliga egenskaper

Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.

Vattnet är tyngst vid +4 °C.
Bild: © Svante Åberg

Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.

Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.

Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).

Vattnet är livsnödvändigt

Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.

När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.

Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.

Vattnet blev referens för temperaturskalan

Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.

När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K

Vätebindningar karaktäriserar vattenmolekylen

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.

Vätebindningarna ger hög ytspänning

Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.

Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.

Vinklad molekyl ger hexagonal struktur

I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats.
Bild: © Svante Åberg

Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.

Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.

Vattnets syra-basegenskaper

Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.

Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.

Etanol

Framställning

Etanol Etanolen (etylalkohol, förenklat skrivsätt EtOH) har uråldriga anor som berusningsmedel och den framställdes genom jäsning av kolhydrater från växtriket. Den kemiska reaktionen som sker är:

C6H12O6 C2H5OH + CO2
socker   etanol   koldioxid

Dessutom behövs en katalysator i form av jäst. Det är ett enzym hos jästsvampen som omvandlar kolhydraterna till etanol. Jästsvampen kan bara överleva i en alkoholhalt på ca 13 %, därefter dör den och jäsprocessen upphör. För att få högre alkoholhalt krävs att man destillerar alkoholen.

Detta var innan den petrokemiska industrin fanns. Idag framställs etanol för industriellt bruk genom hydrering av eten (kallas ibland etylen). Den kemiska reaktionen äger rum med hjälp av en katalysator och är:

H2C=CH2 + H2O C2H5OH
eten   vatten   etanol

Egenskaper

Kokpunkten för etanol är 78 C och fryspunkten -114 C. Den låga fryspunkten gör etanolen lämplig att använda i termometrar. För bättre synlighet färgas den vanligen röd eller blå. Förr användes kvicksilvertermometrar, men de förbjöds av av miljöskäl.

Etanol är lättantändlig och brinner med en blå låga om syretillförseln är god. Flampunkten för ren etanol är 16,6 C. Det innebär att vid temperaturer över 16,6 C bildas det tillräckligt med etanolångor ovanför vätskan för att de ska vara antändbara, förutsatt att ångorna inte ventileras bort. Under denna temperatur kan ångorna inte antändas eftersom koncentrationen av etanolångor är för låg.

I vatten-etanolblandningar är volymen mindre än samma mängd vatten och etanol separat. Det beror på att vatten har ett inslag av struktur även i flytande form som beror på vattenmolekylens vinkel och hur vattenmolekylerna binder till varandra med vätebindningar. Strukturen är då hexagonal, på motsvarande sätt som i snökristaller. Denna struktur är lucker. När etanol blandas med vatten fyller etanolmolekylerna delvis ut det tomrum som finns i vattnet och därför är blandningen mer kompakt än vattnet är enskilt.

Etanol som lösningsmedel

Etanol är vattenlöslig i alla blandningsförhållanden. Den vattenlösliga delen är OH-gruppen som bildar vätebindning till vatten. Den icke vattenlösliga kolvätekedjan med två kolatomer är för kort för att påverka lösligheten i vatten.

Som lösningsmedel kan man dock se skillnad på etanol och metanol. Den något längre kolvätekedjan i etanol med 2 kolatomer i jämförelse med metanolens enda kolatom gör etanolen till ett sämre lösningsmedel för salter. Å andra sidan är etanol bättre lösningsmedel än metanol för feta ämnen, vilket man märker vid fläckborttagning.

Etanol används som lösningsmedel i många sammanhang. Ett exempel är munskölj. Den finns i vattenbaserade färger, rengöringsmedel, i läkemedel, lacker och bläck.

Berusningsmedel

Etanolen, eller "alkoholen", har använts som berusningsmedel sedan mycket länge tillbaka. Etanol bildas naturligt i jäsningsprocesser, t.ex. då frukt blir gammal. Man kunde därför oavsiktligt bli berusad av fermenterad mat. Det är välkänt att alkoholen försämrar omdömet och reaktionsförmågan, men den kan även vara avslappnande.

Benämningen "alkohol" är egentligen ett begrepp som täcker in alla kolväten som har en eller flera OH-grupper. Exempelvis är också träsprit (metanol) en alkohol. Men i dagligt tal brukar man mena etanol när man talar om alkohol.

Medicinska effekter

I kroppen oxideras etanolen till acetaldehyd. Det är ett skadligt ämne som orsakar illamående, så kallad "bakfylla". Acetaldehyden oxideras sedan vidare till etansyra (dvs. ättiksyra) med hjälp av ett enzym.

Etanolen är beroendeframkallande. Långvarigt bruk leder till många allvarliga medicinska tillstånd. Bland de mer kända är skrumplever som innebär att levervävnaden bryts ned och omvandlas till bindväv. Allt större delar av levern dör, blir hård och skrumpnar sedan. En annan känd effekt av långvarigt bruk är hallucinationer och psykiska problem såsom delirium tremens. Ytterligare medicinska problem som förekommer är bland annat högt blodtryck, depression, impotens och strupcancer.

Etanol som fordonsbränsle

Etanolen har samma brandklass som bensinen. En nackdel är att etanol inte förångas lika lätt som bensin i låga temperaturer, och det gör den svår att använda på breddgrader med mycket kallt klimat. Etanol används dock som fordonsbränsle med benämningen E85. Den innehåller 85 % etanol och 15 % bensin sommartid. Vintertid då etanolens begränsade flyktighet kan vara ett problem är proportionerna 75 % etanol och 25 % bensin.

Eftersom etanolen har ett lägre energiinnehåll vid förbränning än bensin är också etanolbilarna törstigare. En fördel med etanol är dock att den kan framställas ur biomassa. Om det kan ske utan att produktionen i övrigt förbrukar stora mängder fossila bränslen, t.ex. för traktorer och transporter inom jordbruket, så kan nettoutsläppet av koldioxid minskas genom att använda etanol som bränsle. De stora koldioxidutsläppen är ju ett allvarligt problem som orsakar global uppvärmning med ekonomiska påfrestningar och social oro när människors levebröd försvinner.

Etanol som industriråvara

Etanol används främst vid framställning av etanal och som lösningsmedel.

Den tekniskt framställda etanolen görs odrickbar genom denaturering. Rödsprit, ofta kallad T-röd, består vanligtvis till 95% av etanol och 5% av denatureringsmedel, som gör alkoholen odrickbar. Exempel på denatureringsmedel är isopropanol, etylacetat, metyletylketon, metylisobutyl-keton, dietylftalat, butylacetat, butanol, Bitrex®, toluen. Dessutom ingår färgämnen.

Destillation

När en blandning av etanol och vatten förångas är etanolen betydlig mer lättflyktig än vattnet. Det medför att halten etanol är mycket högre i ångorna som bildas än i etanollösningen. Detta är principen för uppkoncentrering med hjälp av destillation. Ångorna måste sedan kylas för att man ska få tillbaka dem i vätskeform, men då med högre etanolhalt. Det är dock förbjudet enligt lag att destillera etanol privat.

Destillationen av alkoholen kan utföras i flera omgångar eller med avancerad destillationsapparatur för att maximera etanolhalten. Det är dock i princip omöjligt att uppnå en högre etanolhalt än 96 %. Etanol-vattenblandningen har en azeotrop vid 96 % etanol. Om man skulle försöka destillera en etanollösning med högre halt än 96 % skulle den i stället bli mindre koncentrerad eftersom ångorna som avges är rikare på vatten än etanol ovanför punkten för azeotropen.

mer material på avancerad nivå kommer

Vätebindning

Vätebindningar finns i vatten och i många organiska ämnen i kroppen. Vätebindningar ger ämnena polära egenskaper, såsom löslighet i vatten. Vätebindningarna är också viktiga för strukturen hos till exempel DNA.

I strukturformler brukar vätebindningen markeras med streckad linje.

Bindningskrafter inom och mellan molekyler

Kemiska ämnen hålls samman av starka bindningar såsom kovalenta bindningar i molekylföreningar och jonbindningar i salter. Bindningar inom föreningen är intramolekylära krafter.

Men de finns också bindningar mellan föreningarna, intermolekylära krafter.

intramolekylär = inom molekylen
intermolekylär = mellan molekyler

Intermolekylära krafter är svagare än de intramolekylära.

Vätebindning kan ske när vätet sitter på N, O eller F

Den så kallade vätebindningen hör dock till de starkare intermolekylära krafterna. Den kan beskrivas som en extra stark dipol-dipolbindning.

Vätebindning kan uppstå mellan ett väte som sitter på atomslaget N, O eller F i en molekyl och atomslaget N, O eller F i en annan molekyl.

Här är några exempel på kemiska föreningar som kan bilda vätebindningar:

Vatten: H2O kan vätebinda. Däremot kan inte analogen vätesulfid H2S vätebinda eftersom svavel inte är tillräckligt elektronegativ.
Vätefluorid: HF kan vätebinda. Däremot kan inte analogen vätebromid HBr vätebinda eftersom brom inte är tillräckligt elektronegativ.
Ammoniak: NH3 kan vätebinda.
Karboxylsyror: exempelvis ättiksyra, CH3COOH kan vätebinda.
Alkoholer: exempelvis etanol, CH3CH2OH kan vätebinda. Däremot kan inte analogen etantiol CH3CH2SH vätebinda eftersom svavel inte är tillräckligt elektronegativ. Isomeren CH3-O-CH3 till etanol har samma summaformel, men föreningen är en eter och sådana har inget väte som sitter direkt på syreatomen. Därför kan etrar inte vätebinda.
Aminer: exempelvis ettylamin, CH3CH2NH2 kan vätebinda. Undantag är tertiära aminer som trimetylamin N(CH3)3 eftersom det inte sitter någon väteatom direkt på kvävet. Inte heller kan analogen etanitiol CH3CH2SH inte vätebinda eftersom svavel inte är tillräckligt elektronegativ.

Vätebindning kan även ske till kloridjoner

Kloratomen är inte tillräckligt elektronegativ för att skapa ett elektronmoln med så hög täthet att vätebindningar kan skapas. En enskild kloratom kan däremot få tillräckligt tätt elektronmoln genom att ta upp en extra elektron så att en kloridjon skapas.

En lite udda variant av vätebindningar kan därför fås mellan den negativt laddade kloridjonen och vattenmolekyler i lösningen, exempelvis en koksaltlösning.

Bilden till höger är en ögonblicksbild av en simulering. Vätebindningarna är markerade med röda streck. Väteatomer är vita, syreatomer röda och kloridjonen är rosa.

Man kan se vätebindningar mellan vätet i vatten och kloridjonen, liksom vätebindning mellan vätet i en vattenmolekyl och syret i en annan vattenmolekyl.

N, O och F är starkt elektronegativa atomslag


Elektronmolnet kring en vattenmolekyl är starkt förskjutet från väteatomerna mot syreatomen.
"Water charge distribution" av Martin Chaplin

Atomslagen N, O och F är de mest elektronegativa atomslagen i hela periodiska systemet. Elektronegativa atomer har förmågan att dra till sig elektroner.

I vatten sitter vätet på en syreatom. Vätet har en kärna med laddningen +1 och en elektron med laddningen –1. En fri väteatom har därför nettoladdningen 0. Syret drar till sig elektronmolnet mycket effektivt, vilket leder till att det blir ett positivt laddningsöverskott δ+ på väteatomen. Vatten har två väteatomer, som sitter på syret. Även den andra väteatomen får ett positivt laddningsöverskott δ+. På motsvarande sätt får syreatomen ett dubbelt negativt laddningsöverskott 2δ–.

Det positiva vätet i en vattenmolekyl kan binda till det negativa syret i en annan vattenmolekyl med så kallad vätebindning. Bindningen är ovanligt stark för att vara en intermolekylär bindning. Det beror på att vätet är nästan ”naket” när elektronmolnet dragit sig undan så effektivt från vätet. Därmed kan vätet komma mycket nära syreatomen i den angränsande vattenmolekylen, vilket gör att den elektrostatiska attraktionen blir extra stark.

Vätebindningarna ger vattnet dess egenskaper

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vatten är det viktigaste lösningsmedlet, inte bara inom kemin, men också för livet på jorden. Vattnet har nämligen speciella egenskaper som beror på vätebindningarna mellan molekylerna.

På grund av polariteten hos vätebindningarna är vatten ett utmärkt lösningsmedel för polära ämnen såsom salter och organiska ämnen med polära grupper. Den vinklade formen hos vattenmolekylen ger en hexagonal struktur hos iskristallerna när vattnet fryser, vilket återspeglas i snöflingornas sexkantiga form. Iskristallerna hålls samman av vätebindningar. Vätebindningarnas styrka gör också att vattnets kokpunkt är mycket högre än den annars skulle vara.


Vätebindningarna ger struktur åt DNA

Vårt genetiska arv är kodat i DNA. Där finns basparen AT (Adenin och Tymin) och GC (Guanin och Cytosin). Det är viktigt att A verkligen parar med T och att G verkligen parar med C, annars skulle det bli oordning i den genetiska koden.


Basparning av Adenin och Tymin.

Basparning av Guanin och Cytosin.
"Base pair Adenine Tyhmine" av Yikrazuul" Public Domain Mark "Base pair Guanine Cytosine" av Yikrazuul" Public Domain Mark

Parningen blir rätt tack vare att A och T parar med två vätebindningar, men G och C parar med tre vätebindningar.

Natriumhydroxid

Egenskaper

Natriumhydroxid, NaOH, är ett vitt, fast salt som är lättlösligt i vatten. Upplösningen sker under kraftig värmeutveckling. Om tillsatsen av fast natriumhydroxid är stor kan värmeutvecklingen bli så kraftig att det finns risk att bränna sig. Natriumhydroxid innehåller den starka basen OH och är frätande både i vattenlösning och i fast form. Eftersom den är lättlöslig kan man få lösningar med mycket stark basisk reaktion.

Ibland kallas natriumhydroxiden för "kaustik soda" vilket betyder "frätande soda". Sodan anger att ämnet är basiskt. Benämningen "kaustik" används för att skilja natriumhydroxiden från vanlig soda som är natriumkarbonat, Na2CO3. Ytterligare ett namn på natriumhydroxid är "natronlut". Då man köper natriumhydroxid får man det ofta i formen flingor eller små pastiller.

Hälsorisker

Den starkt basiska hydroxiden denaturerar och bryter ned proteiner. Speciellt utsatt är man för stänk i ögat. Ögat är nämligen fullt med proteiner som koagulerar och bildar en vit massa, som äggvitan i ett kokt ägg. Det är därför viktigt med glasögon när du arbetar med natriumhydroxid. Om du ändå skulle få stänk i ögat måste du omedelbart spola ögat rikligt med rinnande vatten och fortsätta skölja länge. Ring läkare och be om råd när du har spolat ögat i några minuter, eller ännu bättre - be någon hjälpa ringa dig medan du fortsätter spola. Sedan måste du besöka läkare för kontroll och eventuell behandling.

Stänk på huden är visserligen frätande, men inte farliga på samma sätt. Huden är tjock och släpper inte igenom luten. Om du sköljer omgående, så klarar du dig sannolikt utan skador. Stänk på kläder, arbetsbänkar och liknande ska sköljas och torkas bort på en gång, så att det inte blir bortglömt. Annars kan någon ovetande komma i kontakt med hydroxiden och kanske gnugga sig i ögat.

Koncentrationen har betydelse

Hydroxidens frätande förmåga är har direkt samband med koncentrationen. En vanlig förrådslöning med NaOH är ofta 2 molar (2 M, 2 mol/dm3). Den är kraftigt frätande och ska behandlas med stor försiktighet. En NaOH-lösning på lab som är 0,1 mol/dm3 är inte alls lika farlig, men ändå ganska stark. Om koncentrationen är 0,010 mol/dm3, så kan NaOH-lösningen betraktas som relativt ofarlig, men ändå riskabel att få stänk av i ögonen. Är den bara 1 millimolar, dvs. 0,001 mol/dm3, så är NaOH-lösningen tämligen harmlös, för då är den 2000 gånger mer utspädd än förrådslösningen som var 2 mol/dm3.

Hydroxidjonen liknar fluoridjonen

Hydroxidjonen OH och fluoridjonen F har samma laddning och är lika stora. Det innebär att de ofta är utbytbara.

Tandemalj innehåller ämnet hydroxidapatit, Ca5(PO4)3OH, där hydroxidjonen ingår. Hydroxidjonen som ingår i tandemaljen är en stark bas som lätt reagerar med syra som produceras av bakterier i munnen. Det leder till att tandemaljen löses upp. Men om man ersätter hydroxidjonerna med fluoridjoner så att det i stället bildas fluoridapatit, Ca5(PO4)3F, så minskar känsligheten för syra. Fluoridjonen är en mycket svagare bas än hydroxidjonen. Därför reagerar den inte lika lätt med syra och då är också tandemaljen mindre känslig för syra.

Ytterligare ett exempel på likheten är mätning med jonselektiv elektrod avsedd för bestämning av fluoridhalten. I en starkt basisk lösning är hydroxidhalten hög och på grund av likheten med fluoridjoner ger hydroxidjonerna också utslag med den fluoridselektiva elektroden. Man får en så kallad interferens från hydroxid i fluoridmätningen och resultatet blir en överskattning av fluoridhalten i lösningen.

mer material på avancerad nivå kommer

Jämvikt

Jämvikt bygger på att en reaktion sker i framriktningen och tillbakariktningen samtidigt och att reaktionshastigheterna är lika stora. Det innebär att det totalt sett inte sker någon förändring, trots att reaktionerna hela tiden pågår. Man säger att jämvikten är dynamisk därför att det är en pågående process.

Med reaktionsformel så ser jämvikten mellan ämne A och ämne B ut på följande sätt:

A ⇄ B

En liknelse för att förklara jämvikten

Föreställ dig att en hink med vatten står under kranen som är öppen. Men det finns ett hål i hinkens botten där vatten rinner ut. De reaktioner vi tittar på är tillförsel av vatten till hinken (framriktningen) och bortförsel av vatten från hinken (tillbakariktningen).

Vatten utanför hinken motsvarar A i jämvikten ovan, och vatten inuti hinken motsvarar B. Vi kan då skriva jämvikten med ord på följande sätt:

vatten utanför hinken (A) ⇄ vatten inuti hinken (B)

Vi öppnar kranen

Innan vi öppnar kranen, så är hinken tom, men så snart vi öppnar kranen börjar hinken fyllas med vatten. I början är vattennivån låg och det rinner inte ut vatten genom hålet lika snabbt som vatten fylls på från kranen. Det innebär att vattennivån i hinken ökar. Jämvikten har inte ännu ställt in sig.


Vid det högre vattenflödet från kranen till hinken (höger bild), så stabiliseras vattenytan på en högre nivå.
Bild: Svante Åberg

Men ju högre vattennivån blir, desto snabbare rinner vatten ut genom hålet. Till slut rinner vatten ut lika snabbt som det fylls på.

Detta tillstånd får man vid en bestämd vattennivå i hinken som svarar mot ett visst tryck hos vattnet. Denna nivå är jämviktsnivån.

Trots att vi har pågående reaktion i framriktningen (A → B) och samtidigt i tillbakariktningen (A ← B), så är vattennivån stabil. Detta stabila tillstånd, trots pågående reaktioner, kallas dynamisk jämvikt.

Vi ändrar flödet

Om vi sedan skulle ändra kranen så att det tillförs vatten snabbare eller långsammare, så skulle vattennivån i hinken börja förändras igen. Så småningom skulle en ny jämvikt ställa in sig på en annan vattennivå.

Ett högt flöde från kranen ger en hög jämviktsnivå i hinken, ett lågt flöde ger en låg jämviktsnivå.

Exempel på jämvikter

Esterjämvikten

Man kan tillverka väldoftande luktämnen genom att låta alkohol och syra reagera med varandra så att ester och vatten bildas.

alkohol + syra → ester + vatten

Från början finns ingen ester och inget vatten, bara alkohol och syra. Reaktionen sker därför bara åt höger. Men när det väl har bildats en del ester och vatten, så börjar det ske en reaktion åt andra hållet så att alkohol och syra återbildas. Men tillbakareaktionen är långsam i början eftersom det finns så lite ester och vatten som kan reagera.

alkohol + syra ← ester + vatten (långsam i början)

Med tiden bildas det alltmera ester och vatten, vilket gör att tillbakareaktionen blir snabbare. Samtidigt minskar mängden alkohol och vatten, vilket gör att framåtreaktionen blir långsammare. Till slut är tillbakareaktionen lika snabb som framåtreaktionen. Då har dynamisk jämvikt ställt in sig.

alkohol + syra ⇄ ester + vatten

Löslighetsjämvikt

Salter är lösliga i vatten, men bara upp till en viss gräns. När saltlösningen blivit mättad, så är systemet i jämvikt. Exempel på ett salt är natriumklorid, det vill säga vanligt koksalt.

NaCl(s) ⇄ Na+ + Cl

En sak som är speciell i detta fall är att koncentrationen av salt i fast form är konstant, oberoende av hur mycket fast salt vi har. Det innebär att reaktionen i framriktningen alltid är lika snabb.

Däremot varierar koncentrationen av natriumjoner och kloridjoner. I början finns inga natrium- och kloridjoner i lösning. Då sker bara reaktionen i framriktningen.

Men ju mer natrium- och kloridjoner som går i lösning, desto snabbare blir tillbakareaktionen. Till slut faller koksalt ut lika snabbt som det går i lösning. Då har vi fått dynamisk jämvikt.

Jämviktsläget

Massverkans lag

Massverkans lag anger att när ämnen reagerar med varandra, så är reaktionshastigheten proportionell mot koncentrationen av de partiklar som reagerar. Det är en statistisk effekt som kommer av att en kemisk reaktion bara kommer till stånd om de reagerande partiklarna kolliderar. Om koncentrationen av partiklar är hög, så blir det många kollisioner per sekund. Då är det också fler partiklar som reagerar varje sekund – reaktionshastigheten blir hög.

I en jämvikt sker reaktion både i framriktningen (åt höger) och i tillbakariktningen (åt vänster). Jämviktsläget beror på reaktionshastigheten åt höger i jämförelse med den åt vänster. Jämvikt fås när hastigheten åt höger och åt vänster är lika. Det betyder att lika mycket bildas som det som förbrukas. Nettoförändringen blir noll.

Man har så kallad dynamisk jämvikt. Ordet dynamisk anger att reaktionerna hela tiden pågår. Men i och med att inga nettoförändringar sker, så har man jämvikt.

Sannolikheten för kemisk reaktion vid en kollision

Det är emellertid inte varje kollision som leder till kemisk reaktion. Kemisk reaktion innebär att bindningar bryts i den gamla partikeln och nya skapas som ger ett nytt ämne. Men oftast studsar partiklarna bort från varandra utan att reagera. Om partiklarna inte är rätt orienterade i förhållande till varandra vid kollisionen, så sker ingen kemisk reaktion.

Aktiveringsenergin måste övervinnas för att reaktion ska ske

Inte heller sker någon reaktion om kollisionsenergin är för liten. Rörelseenergin i kollisionen måste övervinna den energitröskel det innebär att bryta de gamla bindningarna. Inte förrän dessa är brutna kan nya bildas. Denna energitröskel benämns aktiveringsenergi.

När energinivåerna skiljer, så påverkar det jämviktsläget

Om ämnena på ena sidan i reaktionsformeln är energirikare än ämnena på andra sidan, så är energitröskeln olika stor för reaktionen åt höger respektive åt vänster. (Figur som visar ett sådant exempel ska infogas här.)

När framåt- och bakåtreaktionen sker olika lätt, så påverkar det jämviktsläget. Om till exempel framåtreaktionen är kraftigt exoterm, så är energitröskeln i framriktningen låg och en stor andel av kollisionerna leder till reaktion. Men då blir samtidigt energitröskeln för reaktion i bakåtriktningen hög. Det krävs en hög koncentration av partiklar i högerledet av jämviktsreaktionen för att reaktionshastigheten åt vänster ska bli lika hög som den åt höger. En starkt exoterm jämvikt brukar därför vara starkt förskjuten åt höger.

Jämviktskonstanten är ett mått på jämviktsläget

För att få ett mått på jämviktslägen behöver man få en siffra på hur den aktuella kemiska reaktionen ställer in sig. Värdet hos jämviktskonstanten K återspeglar jämviktsläget. Ju större konstanten är, desto mer förskjuten åt höger är jämvikten. Exempel på en jämvikt som är väldigt starkt förskjuten åt höger är reaktionen mellan vätgas och syrgas då vatten bildas:

2 H2 + O2 ⇄ 2 H2O, K = 3,2·1081 M–1

En jämviktskonstant som är nära noll tyder på en jämvikts som är starkt förskjuten åt vänster. Exempel på en jämvikt som är starkt förskjuten åt vänster är vattnets autoprotolys:

2 H2O ⇄ H+ + OH, K = 1,0·10–14 M2 (lösningsmedlet vatten enhetslöst)

Exempel på en jämvikt som inte är så starkt förskjuten åt någotdera hållet är esterjämvikten:

alkohol + syra ⇄ ester + vatten, K ≈ 4

Litteratur

  1. The Salting Out of Ethanol and Water, Eugene T. Smith, Florida Institute of Technology
    http://chemeducator.org/sbibs/samples/spapers/11smi897.htm (2003-09-23)
  2. The Salting Out of Ethanol and Water, Eugene T. Smith, Florida Institute of Technology
    http://chemeducator.org/sbibs/samples/spapers/11smi897.pdf (2003-09-23)
  3. Bassam Shakhashiri, Chemical Demonstrations, Vol. 3 p. 266, 1983, University of Wisconsin Press, Madison, WI.
  4. Activity Coefficients, A.W.Marczewski
    http://hermes.umcs.lublin.pl/~awmarcz/awm/utils/Activity.htm (2003-09-23)
  5. Introducing Alcohols, University of Idaho
    http://www.chemguide.co.uk/organicprops/alcohols/background.html (2007-11-23)
  6. Nutrients and Solubility, Washington University in St Louis
    http://wunmr.wustl.edu/EduDev/LabTutorials/Vitamins/vitamins.html (2003-09-23)
  7. Water Hydrogen Bonding, Martin Chaplin, Water Structure and Science
    http://www.lsbu.ac.uk/water/hbond.html (2007-11-23)
  8. DNA ur kiwi, Skolkemi
    http://school.chem.umu.se/Experiment/showExp.php?expId=141 (2003-09-23)
  9. Method: Salting Out Procedure for Human DNA Extraction, C. Helms, Washington University in St Louis
    http://hg.wustl.edu/hdk_lab_manual/dna/dna2.html (2007-11-23)
  10. Arctic Ice Coverage and Climatic Change, Eduspace
    http://www.eduspace.esa.int/eduspace/Background/default.asp?document=243&language=en (2003-09-23)
  11. Main page, Wikipedia
    http://en.wikipedia.org/wiki/Main_Page (2007-11-23)
    • Water
      http://en.wikipedia.org/wiki/Water (2007-11-23)
    • Ethanol
      http://en.wikipedia.org/wiki/Ethanol (2007-11-23)
    • Propan-1-ol
      http://en.wikipedia.org/wiki/Propan-1-ol (2007-11-23)
    • Electrolyte
      http://en.wikipedia.org/wiki/Electrolyte (2007-11-23)
    • Solubility
      http://en.wikipedia.org/wiki/Solubility (2007-11-23)
    • Potassium carbonate
      http://en.wikipedia.org/wiki/Potassium_carbonate (2007-11-23)
    • Sodium carbonate
      http://en.wikipedia.org/wiki/Sodium_carbonate (2007-11-23)
    • Sodium bicarbonate
      http://en.wikipedia.org/wiki/Sodium_bicarbonate (2007-11-23)
    • pH
      http://en.wikipedia.org/wiki/PH (2007-11-23)
    • Bromothymol blue
      http://en.wikipedia.org/wiki/Bromothymol_blue (2007-11-23)

Fler experiment


aggregationsformer
Avdunstning och temperatur
Badbomber
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
En märklig planta
Ett glas luft
Exempelfil_Försvinnande bläck (Erik Lövbom)
Fryspunktsnedsättning
Förtenning
Gore-Tex, materialet som andas
Gör ditt eget läppcerat
Gör ett avtryck från papper till stearin
Hockey-visir
Hur fungerar en torrboll?
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Kemi i en brustablett
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Lödtenn 60
Molnet i flaskan
Myggmedel - hur funkar det?
Osynlig gas
Platta yoghurtburkar
Popcorn
Salta isen
Saltat islyft
Slime
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Studsboll
Syrehalten i luft
Tillverka en parfym och gör doftande skraplotter
Utfällning av aluminium
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenvulkan
Ägget i flaskan

fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

jämvikt
Anden i flaskan
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Avdunstning och temperatur
Bestämning av antalet kristallvatten i kopparsulfat
Brus-raketen
Den frysande bägaren
Den omöjliga tvålen - den är preparerad!
Flaskor mun mot mun
Framställ väldoftande luktämnen
Fryspunktsnedsättning
Färgämnen i M&M
Försvinnande bläck
Gasvolym och temperatur
Gummi och lösningsmedel
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur smakar salmiak?
Innehåller koksaltet jod?
Kemi i en brustablett
Kemi i en plastpåse
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Luftfuktighet och rostbildning
Löslighet och pH - En extraktion
Maskrosen som krullar sig
Massverkans lag och trijodidjämvikten
Molnet i flaskan
När flyter potatisen?
Osmos i potatis
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Principen för dynamisk jämvikt
Reaktionshastighet med permanganat
Saltat islyft
Superabsorbenter i blöjor
Utfällning av aluminium
Varför äter vi Samarin?
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

syror och baser
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Badbomber
Brus-raketen
Den tunga koldioxiden
En märklig planta
Flaskor mun mot mun
Försvinnande bläck
Göra lim av kasein
Höna med gummiben?
Indikatorpärlor
Kemi i en plastpåse
Kemiskt snöfall
Löslighet och pH - En extraktion
Mentos-pastiller i kolsyrad läsk
Modellmassa av mjölk
Osmos i ett ägg
Pelargonens färg
pH i kokt mineralvatten
pH-förändringar vid fotosyntes
Regnbågens färger med Rödkåls-indikator
Saltkristaller av en aluminiumburk
Surt regn
Syror och baser i konsumentprodukter
Tag bort rostfläcken med det ämne som gör rabarber sura
Utfällning av aluminium
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Växtfärga med rödbetor enligt receptet från Västerbotten
Älskling, jag krympte ballongen