Utvinna järn ur järnberikade flingor

Tillhör kategori: livsmedel, vardagens kemi

Författare: Therese Söderberg

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Tid för förberedelse: 10 minuter

Tid för genomförande: 30 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Kräver viss labvana

Introduktion

Metall är något som vi kommer i kontakt med i vår vardag på många olika sätt, men visste du att vi ibland också äter metall?

Visst låter det overkligt, men det är sant. Ur frukostflingor som berikats med järn (för att täcka dagsbehovet av järn), kan vi utvinna järnspån och det är det vi ska göra i detta experiment, vi ska även undersöka järnets egenskaper och jämföra med olika järnföremål för att se om det är rent järn vi fått ut.

Riktlinjer

Detta experiment passar både som demonstration och som elevförsök. Jag skulle dock rekommendera att ha det som elevförsök i de lägre åldrarna 4-6 och som demonstration från 7-9.

Säkerhet

Experimentet medför inga risker, men observera att man inte ska äta i laborationssalen eftersom det kan finnas rester av kemikalier på material och bord.

När man är klar med flingsmeten ska man spola ner den i toaletten, eftersom den kan slamma igen i handfatet.

Materiel

Tips: Man kan även använda sig av en magnetomrörare med en magnetloppa, men kom ihåg att stoppa magnetloppan i en plastpåse.

Förarbete

Tejpa fast magneten på pennan eller en stav och stoppa detta i plastpåsen och tejpa fast plastpåsen ordentligt.

Utförande

  1. Stoppa önskad mängd flingor i en plastpåse.
  2. Krossa flingorna med en kavel eller i en mortel.
  3. Häll flingorna i skålen och täck med vatten.
  4. Rör om i smeten med magnetpennan/staven i 5-10 min.
  5. Ta upp pennan/staven och studera de små järnfilsspånen som fastnat på staven.
  6. Skrapa av järnfilspånen på ett papper och dra med en magnet på undersidan för att visa att det är magnetiskt.
  7. Stoppa ner magnetpennan/staven i smeten igen och rör 5-10 min till för att fånga upp mer järnfilsspån. Studera järnet som samlats.
De järnberikade flingorna i vatten Magneten på en strumsticka En plastpåse hindrar järnfilspånen att fastna på själva magneten Järnfilspånen fångas upp
Foto: © Therése Söderberg

Tips

Om plastpåsen smiter åt tätt mot magneten så fastnar järnfilspånen lättare.

Låt magnetpennan/staven stå i smeten över natten. Studera de järnspån som samlats. Magneten ska dock ej stå längre i smeten, för järnet rostar och då faller järnfilsspånen av eftersom det bara är järn som grundämne som är magnetiskt och inte rost (järnoxidhydoxid).

Variation

Testa även detta på andra livsmedel som är berikade med järn. Gör på liknande sätt.

Förklaring

Tillverkarna tillsätter järn till vissa flingor, som ett fint fördelat pulver. Järnpulvret löses i magsyran innan järnet tas upp av kroppen. Det tillsätts i denna form för att inte ge en bismak åt produkten (detta sker innan flingorna rostas). Det kan göras eftersom finfördelat järn inte reagerar med något annat ämne i flingorna.

Eftersom flingorna är rostade måste de blötas upp så att järnet kan frigöras. När magneten sätts ner i smeten så blir järnet polariserat av magnetens magnetfält. Järnpulvret fastnar på plastpåsen runt magneten. Järn har utvunnits ur järnberikade flingor.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Järn i kroppen

Kroppen behöver järn i många livsnödvändiga system i vår kropp. Järnet finns i hemoglobin som transporterar syre till alla celler i vår kropp, i många enzymer och andra transportssystem som är livsnödvändiga, det behövs också järn för att immunförsvaret ska fungera och för vitala funktioner i hjärnan.

Varje cell i vår kropp innehåller järn. Järnet finns i tre olika former [3]:

  1. Hemoglobinjärn: Den vanligaste formen av järn i vår kropp, utgör cirka 2/3 av järnet i kroppen. Hemoglobinjärn finns i de röda blodkropparna och dess uppgift är att transportera syre till kroppens alla celler.
  2. Depåjärn: Är kroppens förråd av järn. Ferritin är en form av depåjärn och den återfinns i lever, mjälte och rödbenmärg. Många kvinnor saknar depåjärn, vilket inte är nyttigt för kroppen.
  3. Myoblobinjärn: Ger köttet dess färg. Finns i musklerna och är bunden på samma sätt som hemoglobinjärn är bunden till hemoglobin.

Kroppen förlorar järn via mag- och tarmkanaler och avstötta celler. Den mängden måste absorberas ifrån mat (0,8-1mg/dag). I yngre åldrar behöver man också järn för tillväxt och utveckling. Järnbrist får man då kroppens förråd av järn har minskat eller blivit helt tömda. Några specifika kännetcken på järnbrist finns inte eftersom järnet har en så central funktion på så många olika ställen i kroppen, men det är vanligt att man känner sig trött och hängig och att man får huvudvärk. Ett annat tecken kan vara om man är mycket förkyld eftersom immunförsvaret påverkas av järnbrist.

Absorption av järn i kroppen

Järnet tas upp i övre delen av muntarmen och upptaget påverkas av mängden järn och dess tillgänglighet. En person med järnbrist har högre upptag av järn än normalt.

Man kan påverka upptaget av järn genom att äta C-vitaminrik mat tillsammans med järnhaltig mat, så som lever och blodkorv. Tex. äta apelsin tillsammans med blodpuddingen så tar kroppen lättare upp det järn som finns tillgängligt.

Tips från Svensk köttinformation [3]

Goda råd för att få ett större upptag av järn från maten

Några järnrika matkombinationer

Köttfärsås, spagetti, paprika
Köttgryta, potatis, brysselkål
Blodpudding, bacon, vitkålssallad
Svamp och levergryta*, ris, broccoli
Rostbiff, potatissallad, tomatsallad
Lammkotletter, ratatouille, bakad potatis
Stekt biff i ciabattabröd, tomat, paprika, lök
Wokad lövbiff med paprika, purjolök, ris
Avsluta med en C-vitaminrik frukt!
* Gravida kvinnor bör undvika lever p.g.a. högt vitamin A innehåll.
Leverpastej kan däremot ätas i normal omfattning

Magnetism

En magnet kan dra till sig föremål som innehåller mycket järn. Det finns även magneter i naturen. Vissa mineraler, såsom magnetit (svartmalm, svart järnoxid, Fe3O4) är naturligt magnetiska. På Atlantens botten i nord-sydlig riktning mitt mellan Europa och Amerika finns en vulkanisk spricka som utvidgar sig sakta. När det vulkaniska materialet stelnar "fryses" också jordens magnetfält in. Havsbotten blir på så sätt en "inspelning" av jordens magnetfälts historia.

När ett järnföremål rör vid en magnet blir den själv magnetisk och kan då dra till sig andra föremål, men om man tar bort magneten försvinner magnetismen direkt. Om stål (järn med hög kolhalt) rör vid en magnet och man sedan tar bort magneten stannar en del av magnetismen kvar. Tack vare det kan man tillverka permanenta magneter av stål. Det är bara järn som rent grundämne som är magnetiskt. Järn som rostat (järnoxidhydoxid) är inte magnetiskt.

Magneter används bland annat i kompasser, disketter, videoband men även i mycket mer. Kompassen fungerar tack vare att det runt våran jord finns ett magnetfält. Och det är utifrån jordens magnetiska poler som kompassen utgår ifrån. Dessa poler ligger i närheten syd- o nordpolen. Den magnetiska nordpolen ligger i närheten av den geografiska sydpolen och tvärt om då det gäller den magnetiska sydpolen.

Fotosyntes

Vatten + koldioxid glukos + syre
12 H2O + 6 CO2   C6H12O6 + 6 O2

Med hjälp av solljus omvandlas koldioxid som fås från luften och vatten från marken via rotsystemet till glukos (socker). Glukosen sammanlänkas till ett komplex som kallas stärkelse.

(c) FreeFoto.com
Bild: © Therése Söderberg, Svante Åberg
Infogat foto: © FreeFoto.com

Stärkelse

Det är stärkelse som bildar den tjocka gröten som man får då man blandat flingorna med vatten och som man känner då man rör om i flingsmeten. Det beror på att de långa molekylerna trasslar in sig i varandra. Stärkelse finns i alla växter och bildas genom fotosyntesen (se ovan). Det finns två olika former av stärkelse, amylos och amylopektin.

I växter finns stärkelsen i granuler, och deras storlek varierar beroende på vilken växt det är. I stärkelsegranualen finns vatten bundet till cirka en tredjedel av stärkelsens vikt och på grund av detta så är stärkelsen olöslig i kallt vatten. Vi får den tjocka flinggröten.

Om man värmer vattnet kommer vattnet att kunna tränga in i granulen och binda till stärkelsen, vilket i sin tur gör att vi får en vattenlösning. Hur hög temperaturen på vattnet måste vara varierar beroende på vilken växt stärkelsen kommer ifrån. För majs krävs 58-63 grader Celsius och för potatis 53-54 grader Celsius.

När vi äter stärkelse så bryts den ner till glukos med hjälp av enzymer som finns i saliven och i mag- och tarmkanalen, detta för att vi ska kunna tillgodogöra oss av den.

Fördjupning

Livsmedel

Maten håller igång oss

Livsmedel behövs för att hålla igång vårt biologiska maskineri. Det är via maten som vi får energi att röra oss, tänka, men också att växa och reparera våra celler i kroppen. Kroppens maskineri är oerhört komplicerat, men det klarar att styra flödena av både energi och näring till kroppens olika delar vid rätt tillfälle. Kroppen hanterar också att ta hand om de restprodukter som vi måste göra oss av med.

Processerna i kroppen när maten bryts ned, fördelas, omvandlas och görs av med, är i grund och botten kemiska reaktioner som drivs av energin i maten. Maskinen är vår biologiska kropp, men de enskilda reaktionerna är kemiska. På så sätt kan man säga att vår kropp är en kemisk maskin.

Matens ursprung

Ursprungligen hittade vi vår föda i naturen. I det moderna samhället är de flesta livsmedlen processade på något sätt. Även livsmedel som inte är processade i sig är ofta odlade eller uppfödda med metoder som skiljer sig från det som sker i naturen. Syftet är att öka produktionen och att säkerställa kvalitén.

Att livsmedlen inte är helt naturligt producerade behöver inte vara ett problem. Det är bra att vi kan producera mera med mindre resurser. Det är också bra att vi har koll på kvalitén. Men vissa saker är inte bra. Tillsatser som gör att livsmedlen får längre hållbarhet, ser mer aptitliga ut och smakar bättre är inte alltid nyttiga, även som det kan verka så.

Grunden till all produktion av livsmedel är solens energi och växternas fotosyntes. I nästa steg kan djuren äta växterna och producera kött som vi sedan kan äta, men ursprunget är växterna. Men om inte djuren och människorna fanns, så skulle växterna till slut bli utan koldioxid som de behöver för sin fotosyntes. Djur och människor andas ut koldioxid. Kropparna bryts också ned till koldioxid och mineraler när de förmultnar. Detta tar växterna hand om, ofta med svamparna som mellanled. Det hela är ett kretslopp där både växter, svampar och djur ingår. Allt levande både äter och äts. Det som får kretsloppet att hålla igång är strålningen från solen.

Tycke och smak

Genom evolutionen har vi lärt oss att välja vad som är bra med hjälp av lukten och smaken. Oftast är det som vi gillar också nyttigt. När maten är skämd, brukar den börja lukta illa, vilket gör att vi inte äter det som kan göra oss sjuka.

Men det vi tycker om är inte nödvändigtvis bra för oss. Sötma är en signal att maten är bra, vilket stämde väl när människan levde nära naturen och behövde den energi man kunde finna. Men nu finns socker i överflöd. Det blir för mycket av det goda, så att vi blir feta och får sjukdomar som karies och diabetes.

Smaken för maten är också en kulturell fråga. Den mat vi lär oss tycka om från barnsben tycker vi oftast om resten av livet. Det finns också kulturella aversioner mot vissa typer av mat. I Sverige är vi inte vana att äta insekter, men insekter är förträfflig mat som är både nyttig och miljövänlig.

material på avancerad nivå kommer att läggas in här

Järn

Järn är ett grundämne med beteckningen Fe, vilket är de två första bokstäverna i det latinska namnet Ferrum. Järn är antagligen den metall som haft störst betydelse för människan genom historien. När man upptäckt hur järn kunde framställas ur malmen, började det gradvis konkurrera ut brons som var känt sedan tidigare. Järnåldern var början på en allt snabbare teknisk utveckling med järn och stål som konstruktionsmaterial som fortsätter än idag.

Sverige har en lång tradition av att framställa järn och stål. Järnmalm bröts tidigt i Bergslagen, men den viktigaste malmbrytningen sker nu i Kirunavaara och Malmberget. Internationellt är ändå Sverige en liten aktör på marknaden.

En viktig egenskap hos järn är att egenskaperna kan förbättras genom inblandning av kol och andra metaller. Kolet ger järnet hårdhet och legeringsmetaller såsom nickel och krom förbättrar seghet, skyddet mot korrosion med mera. Stålet kan också härdas genom upphettning följd av snabb avkylning. Dessutom kan stålet smidas.

En nackdel med järn och stål är att det rostar. Det krävs åtgärder för att minska rostproblemet, vilket man kan göra på flera olika sätt. Trots det kostar korrosionen enorma summor varje år.

Gjutjärn

När järnet tillverkas ur malmen används kol som reduktionsmedel. Kol löser sig i järnsmältan. Om sådant järn får stelna blir resultatet en kollegering av järn som lämpar sig för gjutning, men är inte smidbart.

Stål

Genom färskningsprocesser kan kolhalten minskas. Järn med låg kolhalt kallas stål. Stål finns i många olika kvalitéer där ofta andra metaller också ingår som legeringsämnen. Val av legeringsämnen och halter beror på vilka egenskaper man vill att stålet ska ha.

Stål är smidbart. Själv smidningsprocessen ger förbättrade materialegenskaper genom att kristallstrukturen i järnet förändras.

Järn i människor och djur

Järn är ett livsnödvändigt grundämne för de flesta levande organismer. Järnet ingår i hemgruppen som binder syre för transport via blodbanorna ut i kroppens delar.


Ej syresatt struktur med Chime

Syresatt struktur med Chime

Materialdata för järn

Smältpunkten för rent järn är 1538 °C. Smältpunkten är hög, liksom för flertalet andra metaller, eftersom metallbindningen i materialet är stark. Att värma 1 kg järn från 0 °C till smältpunkten kräver 690 kJ och sedan krävs ytterligare 247 kJ för att smälta det. Fortsätter man värma så når man till slut kokpunkten kokpunkt vid 2862 °C.

Molmassan är 55,847 g/mol. Densiteten vid rumstemperatur är 7,874 g/cm3 och vid smältpunkten 6,98 g/cm3.

De vanligaste oxidationstillstånden är +2 och +3. Eftersom järnet är en relativt oädel metall förkommer den i naturen mest som kemisk förening, ofta förenad med syre eller svavel.

Tekniskt så används järn nästan alltid legerat med andra ämnen. Legeringsämnena förbättrar hårdhet, korrosionsbeständighet osv.

Förekomst

Jordskorpan består till ca 6 % av järn, som är den näst aluminium vanligaste metallen och det fjärde vanligaste grundämnet där. Järnhalterna i jordens inre är betydligt högre, och i jorden som helhet är järn det vanligaste grundämnet med uppskattningsvis ca 35 % av jordklotets totala massa. Även i universum är järn ett ganska vanligt grundämne. Eftersom järn lätt förenar sig med andra grundämnen, främst syre och svavel, är gediget järn ytterst ovanligt i naturen. Det finns som legering dels med endast några procent nickel i fyndigheter främst på ön Disco (Grönland) där det bildats genom en naturlig masugnsprocess, dels med nickelhalter på 34-77 % i den naturligt förekommande legeringen nickeljärn. Vissa meteoriter har också höga järnhalter.

I jordskorpan finns ett stort antal järnhaltiga mineral. De för utvinning av metallen viktigaste är oxider och karbonat. Oxidiska järnmineral är magnetit, Fe3O4, som bildar svartmalm, hematit (järnglans), Fe2O3, som bildar blodstensmalm och limonit (järnockra), FeO(OH)·n H2O, som bildar sjö- och myrmalm. Järn finns också som karbonatet siderit (järnspat), FeCO3, som sulfiden FeS2 (järn(II)sulfid) i mineralen pyrit (svavelkis), markasit och magnetkis, som silikat i t.ex. chamosit, som fosfat i vivianit Fe3(PO4)2·8 H2O och tillsammans med titan i dubbeloxiden ilmenit, FeTiO3.

Världens reserver av järnmalm uppskattas till drygt 290 200 miljoner ton med ett järninnehåll av ca 110 000 miljoner ton. Havsvatten innehåller ca 0,1 mg järn/ton.

Framställning i modern tid

Tekniskt järn är järn som antingen innehåller avsiktligt tillsatta legeringsämnen eller föroreningar som härstammar från utgångsmaterial eller framställningsprocess. Bland legeringsämnen intar kol en specialställning. Kolhalten bestämmer till stor del järnets egenskaper. Järn med kolhalt mindre än ca 2 % kallas stål och är smidbart. Järn med högre kolhalt benämns gjutjärn, tackjärn eller råjärn. Stålframställning från järn sker enligt ett flertal metoder där utgångsmaterialet är smält råjärn eller - om järnframställningen skett i fast form - järnsvamp. Skrot är också ett viktigt utgångsmaterial. Tillverkningsmetoderna behandlas mer ingående under andra uppslagsord, t.ex. bessemerprocess, elektrometallurgi, järnsvampprocesser, Kaldoprocessen, LD-processen, masugnsprocessen, martinprocessen, smältreduktionsprocesser och thomasprocessen. Se även stål och gjutjärn samt metallurgi. Järn och stål är världens viktigaste konstruktionsmaterial; se konstruktionsstål.

Järnframställningens utveckling

Framställning av järn ur malm är känd sedan Hettiternas tid, 1400-talet f.Kr och tidigare. Tillverkning av järn i Sverige anses ha tagit sin början ca 400-500 år f.Kr.; den grundades på sjö- och myrmalm. Brytning av bergmalm började troligen inte förrän på 1100-talet. Framställning av smidbart järn skedde länge direkt ur malm genom en enda process. I början gjordes endast en grop i marken, fodrad med lera eller sten. Bränsle och reduktionsmedel var ved som fick brinna ned till en glöd, varmed rostad myrmalm upphettades och reducerades till järn. Längre fram gjordes även ugnar av sten, som höjde sig över markytan men dock var mycket låga; träkol användes i stället för ved. Luft tillfördes genom naturligt drag vid de äldsta ugnarna. Genom att införa bläster, först hand- eller trampdriven men senare driven av vattenkraft, åstadkom man högre temperaturer. Temperaturen i blästerzonen blev dock inte så hög och atmosfären inte så starkt reducerande att det erhållna järnet smälte till råjärn (tackjärn). Det samlades i halvsmält form på ugnsbottnen och fick brytas ut med jämna mellanrum efter avställning av driften. Man fick fram ett mycket slagghaltigt järn, som genom upprepad upphettning och hamring bearbetades till en för verktyg och vapen användbar produkt.

I strävan att ekonomisera driften av ugnarna ökades ugnshöjden, och luftinblåsningarna gjordes effektivare. Järnets kolhalt ökades därvid och järnet erhölls i smält form. Gångarten avskildes som flytande slagg. Järnet kunde gjutas och användas som utgångsmaterial för framställning av smidbart järn, stål. Denna utveckling från en diskontinuerlig process till en kontinuerlig schaktugnsprocess, masugnsprocessen, skedde under 1100-1200-talen.

För att kunna överföra tackjärn till smidbart järn utvecklade man de primitiva metoderna till de s.k. härdsmides- eller välljärnsmetoderna, t.ex. osmund- (medeltiden), tysk- (1500-talet), vallon- (1600-talet) och lancashiresmide (1800-talet). Som bränsle och reduktionsmedel användes länge träkol i masugnarna. P.g.a. brist på träkol provades som alternativ stenkol i form av koks. Den första stenkolsmasugnen uppfördes i England 1735. I Tyskland byggdes den första koksmasugnen 1767. Genom riklig tillgång på träkol, järnmalm lämplig för masugnsdrift och vattenenergi hade dittills Sverige varit ledande inom järnframställningen (jfr Järnhanteringen i Sverige nedan). I mitten av 1700-talet härrörde 30-40 % av världshandeln med järn från Sverige. Andelen sjönk dock snart mycket kraftigt. I Sverige, som saknar inhemska koksande stenkol, började träkol ersättas med koks först under de första åren av 1900-talet.

Under 1900-talets första hälft byggdes i Sverige ett flertal elektromasugnar för råjärnsframställning. I dessa ersätts bränslet av el, och reduktionsmedlet utgörs av träkol eller koks (stenkol). Från 1960-talet sker all framställning i Sverige i masugnar med koks som bränsle och reduktionsmedel.

Vid sidan av masugnsprocessen har under 1900-talet järnsvampprocesser utvecklats, där järnmalmen reduceras i fast fas i schaktugn med gas, numera framställd ur naturgas, eller i roterugn eller tunnelugn med stenkol och koks. Denna råjärnsframställningsmetod tillämpas numera endast i ringa utsträckning i Sverige. Här hade den dock stor betydelse i mitten av 1900-talet. Ett intensivt arbete pågår under 1990-talet i olika delar av världen för att utveckla en ny typ av järnframställningsprocesser - s.k. smältreduktionsprocesser - där agglomererade järnmalmer (sinter) ersätts av järnmalmspulver (slig), koks ersätts av stenkolspulver och masugnen oftast ersätts av en konverter.

Råjärnsproduktionen i Sverige uppgick under 1990-talet till ca 3 miljoner ton per år och sker i två masugnar vid SSAB, Luleå, och två masugnar vid SSAB, Oxelösund. Järnsvamp framställs i Höganäs i en kvantitet om 100 000-120 000 ton per år. Järnsvampen används som utgångsmaterial för järnpulver.

Av det råjärn som tillverkas i världen (537 miljoner ton 1998) utgör 93,1 % masugnsråjärn; resten är järnsvamp som framställs huvudsakligen i länder där billig naturgas är tillgänglig som bränsle och reduktionsmedel.

Järnets egenskaper

Naturligt järn består av en blandning av fyra stabila isotoper med masstal 54, 56, 57 och 58. Ett tiotal radioaktiva isotoper är dessutom kända.

Rent järn är en silvervit, plastiskt formbar och ej särskilt hård metall, som är ferromagnetisk upp till Curie-punkten vid 768 °C. Om en järnmagnet upphettas över denna temperatur, förlorar den sin magnetisering. Järn har tre allotropa modifikationer. Det vid vanliga temperaturer stabila s.k. α-järnet med en rymdcentrerad, kubisk struktur övergår vid 906 °C till en ny modifikation, g-järn, som har ytcentrerad kubisk struktur, är paramagnetiskt och kan bilda fasta lösningar med järnkarbid (cementit) Fe3C, vilket utnyttjas vid stålframställning. Vid 1 403 °C bildas en ny allotrop modifikation, δ-järn, med rymdcentrerad, kubisk struktur, som är stabil upp till smältpunkten. Rent järn leder elektrisk ström ca sex gånger sämre och värme ca fem gånger sämre än koppar.

Rent järn är stabilt i torr luft och i vatten som inte innehåller syre eller koldioxid. Metallen reagerar däremot lätt med utspädda syror under bildning av vätgas. I koncentrerade oxiderande syror som salpetersyra eller sura dikromatlösningar överdras ytan med ett tätt lager av järn(III)oxid, Fe2O3, som skyddar mot vidare angrepp (s.k. passivering). Järn reagerar även med varm koncentrerad natriumhydroxid under vätgasutveckling och bildning av järn(III)hydroxidfällning. I fuktig luft eller i syrehaltigt vatten överförs metallen snabbt till järn(III)oxidhydroxid, FeO(OH), rost. Järn reagerar direkt med de flesta icke-metaller. I finfördelad form brinner järn i luft (är pyrofor) och metallen reagerar också direkt med svavel, halogener, kol och fosfor. Järnets fysikaliska och kemiska egenskaper varierar kraftigt med halten kol och lösta metaller.

Stärkelse

Fotosyntesen bygger upp en energireserv av stärkelse

Stärkelse bildas i alla växter genom fotosyntesen. Med hjälp av solljusets energi omvandlar det gröna klorofyllet i cellen koldioxid från luften och vatten från rotsystemet till den enkla sockerarten (monosackariden) glukos, som också kallas druvsocker. Den utgör byggstenarna till stärkelsen. Som en biprodukt bildas även syre.

Solenergi + 12 H2O + 6 CO2 → C6H12O6 + 6 O2

Om växten har gott om druvsocker kan det omvandlas till stärkelse. Stärkelse är lättare att spara och fungerar som växtens energilager.

Stärkelsens uppbyggnad och förekomst

Stärkelse och glykogen är exempel på polysackarider (poly = många). De är uppbyggda av ett stort antal monosackarider. När stärkelse ska bildas så sammanlänkas glukosmolekylerna till jättestora komplex. Stärkelse är näst cellulosa den vanligaste organiska substansen på vår jord. Stärkelse förekommer i växterna främst i frön, rötter och rotknölar och utgör en näringsreserv för den spirande plantan.

Det finns två former av stärkelse, amylos och amylopektin. Dessa stärkelsemolekyler bildar i huvudsak kristallina strukturer. Amylosen består av en enda kedja med 100 - 10 000 glukosenheter. I amylopektinet är glukoskedjan starkt förgrenad och molekylen består av cirka 100 000 glukosenheter. Dessa anses vara de största naturligt förekommande molekylerna.

I växten förekommer stärkelsen i så kallade granuler, vilka har varierande storlek och utseende beroende på växslag. Dessa granuler är mycket små, endast några 1000-dels mm. Molekylstorleken i amylos och amylopektin varierar i olika växtslag, vilket förklarar de olika egenskaperna hos stärkelseenheterna.

Svällningsegenskaper

I stärkelsegranulen (stärkelsekornet) finns vatten bundet till ungefär 1/3 av stärkelsens vikt. På grund av den kristallina strukturen i granulen är stärkelsen olöslig i kallt vatten. Vid värmebehandling förklistras stärkelsen, det vill säga den sväller under upptagande av vatten. Granulerna läcker samtidigt ut amylos, medan amylopektinet förblir olöst i granulerna. Vid den fortsatta upphettningen börjar även amylopektin frigöras från granulerna.

Svällningen av granulerna leder till viskositetsökning och genomskinligheten minskar. Man säger att stärkelsen gelatineras - bildar en gel. Viskositeten når sitt maximum när granulerna är maximalt uppsvällda utan att ha sönderfallit.

Starttemperaturen för gelbildningen i de olika stärkelsesorterna är

Vidare uppvärmning gör att granulerna sönderfaller när stärkelsen går i lösning. Samtidigt minskar viskositeten.

Vid avkylning blir stärkelsegelen fastare, med undantag för potatisstärkelsen, som ger en tunn och klistrig gel. Mekanisk bearbetning, till exempel mycket kraftig vispning, påverkar också viskositeten så att gelen blir tunnare.

Retrogradering

Molekylerna i en stärkelselösning som svalnar har en tendens att kristallisera. Denna effekt är tydligast för amylos som har linjära kedjor som kan lägga sig vid varandra. Stärkelsekristallisationen benämns retogradering. Den retrograderade stärkelsen blir fastare och går till slut att dela med kniv, speciellt om andelen amylos i stärkelsen är hög.

Vid retrograderingen har gelen en tendens att avge överskottsvatten. Det kan vara till fördel t ex när det gäller att få en pudding att stelna, men det kan vara till nackdel om det är önskvärt att så mycket vatten som möjligt ska vara bundet, som i mjukt bröd. Bröds åldrande förklaras delvis av den här effekten.

Matspjälkning

När vi tuggar kokt potatis eller bröd (som ju också värmebehandlats) blandas stärkelsen med saliv. Saliv innehåller ett ämne som påbörjar stärkelsens nedbrytning och maltos bildas. När födan når tolvfingertarmen spjälkas kvarvarande stärkelse av enzym från bukspott. Den bildade maltosen spjälkas slutligen till glukos (druvsocker) av ett enzym från tolvfingertarmens slemhinna. Glukosen upptas av blodet.

Vid tillagning har stärkelse en benägenhet att bilda resistent stärkelse på grund av retrogradering. Denna stärkelse uppstår exempelvis vid kokning och efterföljande avsvalning av ris. Resistent stärkelse bildas även när bröd åldras. Resistent stärkelse bryts inte ner förrän i tjocktarmen vilket gör att den kan räknas som kostfiber.

Modifierad stärkelse

Stärkelse är framför allt en viktig ingrediens i många livsmedel, men används också i tekniska sammanhang, exempelvis som bindemedel i papper. Oftast är stärkelsen modifierad för att förbättra gelatiniseringsegenskaperna, men även löslighet, tålighet mot temperaturförändringar, hållbarheten och andra egenskaper kan förbättras. Modifieringen kan ske med mekanisk bearbetning, men hjälp av enzymer eller på kemisk väg. Ett exempel på modifierad stärkelse är dextrin (E1400), som är en löslig form av stärkelse.

Glykogen kallas ibland djurstärkelse

Våra celler kan också lagra druvsocker. Druvsockermolekylerna kopplas då ihop till så kallad glykogen och utgör vår näringsreserv. Glykogen lagras i våra muskler och i levern där det snabbt kan sönderdelas till druvsocker när vi behöver energi. Trots att glykogen är uppbyggd av glukosmolekyler precis som stärkelse så är det inte stärkelse, men har likheter med framför allt amylopektinet i stärkelsen. En glykogenmolekyl kan innehålla 6 000-30 000 glukosenheter.

Amylos och amylopektin är två former av stärkelse

Stärkelse hör till gruppen kolhydrater och mer än hälften av allt kolhydrat vi människor får i oss kommer från stärkelse. Stärkelse finns i två olika former; amylos och amylopektin.

Amylos är ogrenad stärkelse
Bild: © Svante Åberg

Amylopektin är grenad
Bild: © Svante Åberg

Båda formerna är polymerer av glukos. Skillnaden är att amylos är rak medan amylopektin är grenad. I amylos är glukosenheterna kopplade till varandra med a-1,4-bindningar. Amylopektin har en a-1,6-bindning med jämna mellanrum, vilket medför att den blir grenad. Amylopektin liknar på det viset glykogen, som är en lagringsform av stärkelse. Glykogen är dock ännu mer grenad än amylopektin. I både amylos och amylopektin är syrebryggorna vända åt samma håll. Det gör att stärkelsemolekylen blir spiralvriden.

Mer om stärkelsegelatinisering

Ett välkänt fenomen vid livsmedelstillverkning och matberedning är stärkelsegelatiniseringen. Om vi exempelvis värmer någon viktprocent potatisstärkelse i vatten till ca 60 °C bildas en transparent och förhållandevis fast gel. Vad som verkligen händer vid stärkelsens gelatinisering har klarlagts under senare år, och vi skall här söka ge en molekylär beskrivning av fenomenet.

Stärkelsekornen (granuler) innehåller ett kanalsystem där vatten och andra små molekyler (t ex jod och jodidjoner) lätt kan röra sig. Vid temperaturer under gelatiniseringen sker även en viss svällning i samband med vattenupptagning i kornen (en ökning av diametern med upp mot 30% har rapporterats). Troligen är det de mer amorfa (amorf = strukturlös) skikten i stärkelsekornen som sväller vid denna vattenupptagning. Det som sedan händer, i närvaro av vatten i överskott vid cirka 60 °C, är att amylosmolekyler plötsligt börjar läcka ut från kornen, och samtidigt tränger vatten in i stärkelsekornen. Den kristallina strukturen går då förlorad. Blockeras amylosläckaget kan hela gelatiniseringen avstanna.

En färdigsvälld gel består av kraftigt förstorade stärkelsekorn vilka i sig har en gelstruktur dominerad av amylopektin i vatten. Mellan kornen finns en kontinuerlig vattenfas med lösta amylosmolekyler. Stärkelsegelen är en aggregatgel - aggregaten är de svällda stärkelsekornen - i en kontinuerlig amyloslösning. Gelens reologiska egenskaper (= nästan fast, nästan flytande tillstånd) beror främst på aggregatens konsistensförhållanden och tätpackning samt den kontinuerliga amyloslösningens viskositet.

Fördjupad teori om gelatinisering av stärkelse
Övriga termiska omvandlingar

Vid uppvärmning av stärkelse i vatten förekommer - förutom gelatiniseringen - ytterligare två omvandlingar.

Den första toppen i kurvan är den irreversibla gelatiniseringen, och ytan under toppen är proportionell mot entalpin i omvandlingen. Toppen därefter förekommer endast när vattenmängden är otillräcklig för total gelatinisering, och anses motsvara en form av "smältning" av icke-gelatiniserade stärkelsegranuler. För potatisstärkelse krävs minst fyra vattenmolekyler per glukosenhet för att gelatinisering över huvud taget skall ske, och fullständig gelatinisering kräver 14 molekyler vatten/glukosenhet. Motsvarande siffror för vetestärkelse är 4 resp 20 vattenmolekyler/glukosenhet.

Diagrammet visar hur mycket värme som måste tillföras vid olika temperaturer för att värma en blandning av 1 del vatten + 1 del vätestärkelse. En topp i diagrammet visar att det pågår en energikrävande process vid den aktuella temperaturen.

Gelatiniseringstemperaturen är relativt konstant medan temperaturen för den andra omvandlingen ökar med avtagande vattenhalt (när vattenhalten i vetestärkelse varierar från 35 % till 45 % minskar temperaturen från 107 °C till 88 °C). Under ca 30 % vatten förekommer ingen gelatinisering.

Vid ännu högre temperatur kan den tredje omvandlingen observeras. Denna omvandling är en slags "smältning" av amylos-lipidkomplexet, och omvandlingen är reversibel (omvändbar; som kan återgå till det ursprungliga tillståndet).

Stärkelsegelens åldrande

När en stärkelsegel lagras ändras den relativt snabbt på grund av tendensen till kristallisation. En gel med hög vattenhalt kan därför spricka, och geler med lägre vattenhalt, t ex ett brödinkråm, hårdnar vid lagring på grund av denna kristallisationsprocess. Kristallisationen går snabbast vid kylskåpstemperatur. Man bör därför inte lagra bröd i kylskåpet.

Kristallisationen tycks ske av amylopektin inuti de gelatiniserade granulerna. Processen är reversibel vilket bl a framgår av att bröd som blivit hårt kan "färskas upp" genom uppvärmning till ca 70 °C.

Polära lipiders effekt på stärkelsegelen

Lipider, med endast en kedja och en polär grupp, har drastiska effekter på stärkelsegeler. En krämliknande stärkelsegel med klistrig (lång) konsisten förlorar omedelbart sin klistrighet genom tillsats av en liten mängd monostearin utspädd i vatten. Orsaken till detta fenomen är bildning av amylos-lipidkomplex. Effekten av denna komplexbildning blir att amylosmolekylerna i gelens kontinuerliga medium (kemiska miljö, lösning) fälls ut. Komplexet förlorar nämligen sin vattenlöslighet vid en viss kritisk mängd av lipidmolekyler per amylosmolekyl. Monoglycerider används som funktionell tillsats just för att reducera klistrighet i bl a pastaprodukter och i potatispulver.

En annan effekt uppnås om lipiden tillsätts före gelatiniseringen.

Modifierad stärkelse

Det förekommer även vissa kemiska derivat (derivat = kemiskt förändrad variant) av stärkelse inom livsmedelsindustrin.

Kallsvällande stärkelse är en vanlig stärkelseform i pulverprodukter som skall kunna färdigställas direkt genom blandning med vatten, t ex välling-, sopp- och såspulver. Den utgörs helt enkelt av gelatiniserad stärkelse som torkats. När vatten sedan tillsätts återbildas stärkelsegelen momentant.

Ett flertal olika stärkelsetyper används inom livsmedelsindustrin. Potatisstärkelse ger en transparent gel och den bildar gel även vid mycket låga koncentrationer (ca 0,1 %). Vetestärkelse ger en ogenomskinlig gel, men till skillnad från potatisstär kelse krävs flera procent vetestärkelse för att man skall få en gel.

Om man vill åstadkomma en stabil, klar och tjockflytande lösning som inte sätter sig till en gel bör man använda arrowrotens speciella stärkelse.

Slutligen bör nämnas att huvuddelen av den stärkelse som tillverkas ur potatis och vete har tekniska användningar även utanför livsmedelsindustrin. Limning av papper är den dominerande användningen i vårt land, och etanoltillverkning är ett expanderande användningsområde ("Absolut" vodka bland annat).

Litteratur

  1. Kåre Larsson och Bo Furugren, Livsmedelsteknologi - Kemiska grunder, 1995, Avdelningen för livsmedelsteknologi, Lunds universitet.
  2. Östen Dahlgren, Laga mat - hur man gör och varför, 1994, 1:a upplagan, Liber Utbildning AB, Stockholm.
  3. Järn, Svensk köttinformation
    http://www.meatinfo.com/naring/jarn.html (2003-08-22)
  4. Blodbrist, järn (järnbristanemi), NetDoktor
    http://www.netdoktor.se/sjukdomar/fakta/blodbristjaern.htm (2003-08-22)
  5. Extracting Iron from Breakfast Cereal, Virtual Chemistry, University of Oxford
    http://www.chem.ox.ac.uk/vrchemistry/FilmStudio/breakfast/HTML/page01.htm (2003-08-22)
  6. Ferritin - Iron-Storage Protein, Molecule of the Month
    http://www.chemistry.wustl.edu/EduDev/Ferritin/MoleculeOfTheMonth/
    ferritintutorial_molmonth.html (2003-08-22)
  7. The Hemoglobin Protein in the Presence and Absence of Oxygen, Brian Shea, James Madison University
    http://www.isat.jmu.edu/users/klevicca/hemoglobin_papers/Brian_Hemo.doc (2003-08-22)
  8. Hemoglobin and the Heme Group, Rachel Casiday and Regina Frey, Washington University
    http://wunmr.wustl.edu/EduDev/LabTutorials/Hemoglobin/
    MetalComplexinBlood.html (2003-08-22)
  9. FreeFoto.com, FreeFoto.com
    http://www.freefoto.com/index.jsp (2003-05-26)
  10. Bo Paulsson och TEFY, Fysik Lpo, för grundskolans senare del, bok 2, 1997, Avdelningen för livsmedelsteknologi, Skånetryck, Genevad.
  11. M2001 Elektromagnetism och elektronik, Johanna Lindström och Lena Frölander-Ulf, Arcada
    http://www.sit.fi/~lindjoha/fysik.html (2003-05-26)
  12. Iron Absorption From Elemental Iron-Fortified Corn Flakes In Humans. Role of Vitamins A and C, Marý´a Nieves Garcý´a-Casal et. al.
    http://www.idpas.org/pdf/2219IronAbsorptionfromElementalIron.pdf (2009-08-17)

Fler experiment


livsmedel
Bjud din jäst på mat
Blev disken ren?
Blå himmel och röd solnedgång
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Diska med äggula
Doft och stereoisomeri
Enzymaktivitet i ananas
Enzymkinetik för katalas
Flyter isen i matoljan?
Framställ låglaktosmjölk
Fruktköttet får solbränna
Fruktmörade proteiner
Gelégodis i vatten
Göra lim av kasein
Hur gör man kakan porös?
Hur moget är äpplet?
Hur mycket vatten finns i maten?
Höna med gummiben?
Innehåller koksaltet jod?
Kallrörd vaniljkräm och saliv
Kan man tapetsera med abborrar?
Koka Cola
Koka knäck
Maizena gör motstånd
Majonnäs - en emulsion
Massverkans lag och trijodidjämvikten
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Modellmassa av mjölk
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Pektin och marmeladkokning
Popcorn
Regnbågens färger med Rödkåls-indikator
Skär sig majonnäsen?
Släcka fett på rätt sätt
Stärkelse och vatten - fast eller flytande?
Syror och baser i konsumentprodukter
Testa C-vitamin i maten
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför svider det i ögonen när man skalar lök?
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Äta frusen potatis

vardagens kemi
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Bestäm CMC för diskmedel
Blev disken ren?
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Den omöjliga tvålen - den är preparerad!
Diska med äggula
Eld - varför brinner det?
Eldprovet
Enzymaktivitet i ananas
Enzymer i Tvättmedel
Ett gammalt tvättmedel, del 1: Salt ur björkaska
Ett gammalt tvättmedel, del 2: Tvål ur saltet
Ett målande experiment - att rengöra en målarpensel
Falu rödfärgspigment ur järnvitriol
Framställ en detergent
Framställ låglaktosmjölk
Fruktköttet får solbränna
Färga ullgarn med svampar
Färgämnen i M&M
Gore-Tex, materialet som andas
Gör din egen limfärg
Gör din egen tandkräm
Gör ditt eget läppcerat
Gör hårt vatten mjukt
Göra lim av kasein
Hockey-visir
Hur fungerar en torrboll?
Hur gör man kakan porös?
Hur moget är äpplet?
Hur smakar salmiak?
Håller bubblan?
Karbidlampan
Kemi i en brustablett
Kemisk vattenrening
Majonnäs - en emulsion
Maskrosen som krullar sig
Modellmassa av mjölk
Myggmedel - hur funkar det?
Målarfärgens vattengenomsläpplighet
När flyter potatisen?
Olja som lösningsmedel
Optiska Vitmedel
Osmos i ett ägg
Osynlig gas
Pektin och marmeladkokning
Pelargonens färg
Permanenta håret
Pulversläckare
Rengöra silver
Rostbildning och rostskydd
Skär sig majonnäsen?
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Superabsorbenter i blöjor
Surt regn
Syror och baser i konsumentprodukter
Såpbubblor
Tillverka din egen deodorant
Tillverka din egen glidvalla
Tillverka din egen tvål, del 1: Själva tvålen
Tillverka din egen tvål, del 2: Parfymera och färga tvålen
Tillverka ditt eget läppstift
Tillverka Falu rödfärg enligt gammalt recept
Tillverka papperslim
Tillverka rengöringskräm
Tvätta i hårt vatten
Utfällning av aluminium
Vad händer då något brinner?
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Vad är skillnaden mellan maskin- och handdiskmedel?
Varför färgas textiler olika?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför rostar järn och hur kan man förhindra det?
Varför slipper bilen varma yllekläder på vintern?
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Vattenrening
Visa ytspänning med kanel
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Ägget i flaskan
Ärg på en kopparslant
Äta frusen potatis