Ett glas luft

Tillhör kategori: aggregationsformer, fysikalisk kemi, gaser, urval reviderat experiment

Författare: Svante Åberg   Medverkande: Emma Bergh

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Ett glas luft

Tid för förberedelse: 10 minuter

Tid för genomförande: 10 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Busenkelt

Introduktion

Kan man säga att luften är någonting när man inte kan se den? Genom detta experiment kan man undersöka om luft verkligen är någonting.

Riktlinjer

Experiment är lämpligt att genomföras som elevförsök.

Säkerhet

Experimentet är helt ofarligt då man endast använder vatten.

Vattnet kan spolas ut i vasken och papper slängas i papperkorgen.

Materiel

Förarbete

Inget förarbete.

Utförande

  1. Fyll vatten i skålen
  2. Lägg papperet i botten av muggen
  3. Vänd muggen upp och ner och sätt ner den så i skålen.
  4. Ta upp den och se vad som hänt med papperet
Bild: © Emma Berg

Variation

Man kan luta glaset snett och göra om försöket. Vad händer då? - Prova olika lutningar.

Hur mycket papper kan man stoppa i glaset utan att det blir blött?

Förklaring

Luften skyddar papperet från att bli blött. Luften tar plats och i glaset blir det en luftficka om man sänker det upp och ner i vattnet. Ju mer lutat glaset är ju mindre luft följer med ner, för den hinner "smita ut" mellan glaset och vattenytan. Pappret riskerar att bli blött. Håller man glaset rakt ner kan inte luften komma ut ur glaset eftersom luft är lättare än vatten.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Experimentet är som en dykarklocka

Bild: © Emma Berg

Man kan likna detta experiment med en dykarklocka. Förr använde man stora dykarklockor av metall när man skulle hämta saker från havsbotten. Men man kan inte sänka ner en dykarklocka alltför djupt. Då pressar vattnet ihop luften inuti klockan för mycket. På 10 m djup är luften ihoppressad till hälften därför att trycket är dubbelt så stort som på ytan.

Även luften i glaset i vår experiment pressas samman lite, men eftersom vi inte sänker ned det så djupt i vattnet så minskar luftvolymen väldigt lite. Det handlar bara om cirka 1 mm.

GDC: Partikeltänkande

När vi säger att ett glas är tomt, så är det för att vi inte kan se något i glaset, men i verkligheten är glaset alltid fullt. Det är bara frågan om det är dryck eller luft i glaset.

Luft är också materia. Materia är atomer och molekyler. All materia har en vikt, men vi känner inte att luften väger något eftersom vi ”simmar omkring” i luften på samma sätt som man kan simma i vatten. När du badar så känner du inte heller att vattnet väger något, bara att det är tyngre att röra sig. Även i luft är det tyngre att röra sig. Skillnaden är att luften är mycket tunnare än vattnet. Därför måste man röra sig snabbt för att märka luftmotståndet.

Att luft är mycket tunnare än vatten beror på att luft är en gas och vatten en vätska vid vanliga temperaturer. I vattnet så rör sig vattenmolekylerna, men de är alltid nära varandra. Det finns inga tomrum mellan molekylerna. I luft, som ju är en gas, är det däremot mest tomrum. Gasmolekylerna rör sig snabbt och kolliderar ofta, men mellan varje kollision så rör sig molekylen i ett fullständigt tomrum. De stora avstånden mellan gasmolekylerna gör att densiteten för luft är mycket liten.

Men även om det är glest mellan molekylerna i luften, så kolliderar molekylerna med allt som finns i närheten både väldigt ofta och med hög hastighet. Kollisionerna skapar ett tryck på det som finns i runt omkring, till exempel på vattnet i skålen i vårt experiment. Luftmolekylernas tryck på vattenytan hindrar därför vattnet att komma in i glaset.

Experimentet visar att luft faktiskt är materia, även om vi inte kan se något och glaset verkar vara tomt.

Fördjupning

Luft

Atmosfären

Luften är den atmosfär som omger jorden och som vi andas. Luftlagret kring jordklotet är tätast vid jordytan, men tunnas successivt ut innan det övergår i rymden. Man brukar säga att atmosfären är 100 km tjock, därefter är man ute i rymden. Men det finns spår av jordens atmosfär ända upp till 1000 km höjd. Det kan verka som att atmosfären är väldigt tjock, men i jämförelse med jordens storlek är luftlagret bara en tunn hinna.

Sammansättningen hos torr luft är:

kväve (N2)78,08 %
syre (O2)20,95 %
argon (Ar)0,93 %
koldioxid (CO2)0,04 %
diverse ädelgaser, väte, mm....

Vattenångan i luften

I tabellen finns inte vattenånga med. Andelen vattenånga är variabel och beror främst på temperaturen. På sommaren är halten vattenånga i atmosfären mycket högre än på vintern. Den totala mängden vatten i luften motsvarar i genomsnitt bara 25 mm regn om allt vatten i atmosfären på hela jorden skulle falla ned som regn samtidigt.

Den tidiga atmosfären

Luften har inte alltid haft den sammansättning den har nu. När jordklotet nyss hade svalnat, efter att solsystemet skapats, fanns inget syre. Atmosfären bestod mest av koldioxid. Efter livets uppkomst ändrades successivt förhållandena. När fotosyntetiserande organismer producerade syre som slaggprodukt, var det till en början så att syret bands till järn och bildade rost. Men när järnet tog slut blev det överskott av syre som hamnade i atmosfären. Nya organismer som andades syre utvecklades. Under en period var syrehalten i atmosfären över 30 %, men sedan minskade det igen till dagens 21 %. Syrehalten i atmosfären fortsätter faktiskt att minska, något som har pågått under 1 miljon år, men minskningen är mycket långsam.

Luftens kvalitet

Vi är helt beroende av atmosfären. Människor och djur måste andas luften för att få syre. Syret skulle kunna ta slut om inte växter producerade syre med hjälp av energin i solljuset. Växterna andas i stället in koldioxid som vi andas ut, så växter och djur är beroende av varandra.

Luftens kvalitet är också viktig. Till exempel kan överskott av växthusgaser rubba jordens temperatur så att klimatet ändras och kanske går över styr. Föroreningar sprids också lätt med vindarna och skapar problem. Sura gaser orsakade stora försurningsproblem för ett antal årtionden sedan, men lyckligtvis har man tagit itu med problemet så att situationen med försurning inte är lika kritisk nu.

material på avancerad nivå kommer att läggas in här

Separation av luftens gaser

Kväve, syre och argon utvinns ur luften i stor skala.

Fraktionerad destillation vid låga temperaturer

Den vanligaste metoden för utvinning är fraktionerad destillation vid mycket låga temperaturer där gaserna kondenserats till vätska. På grund av tekniken att kyla luften kallas metoden även kryogenisk destillation.

Destillation bygger på att jämvikten mellan vätska och gas är kopplad till de olika ämnenas kokpunkt. Ämnena med lägst kokpunkt avdunstar lättast och samlas upp vid de lägre temperaturerna i destillationskolonnen längst upp. Ämnen med högre kokpunkt samlas upp där destillationskolonnen är varmare i sin nedre del.

Kokpunkterna för de aktuella gaserna i luften är följande:

gaskokpunkt (°C)
kväve-196
argon-186
syre-183

Först filtrerar man luften för att avlägsna damm. Sedan komprimerar man och kyler ned luften till en vätska. Den komprimerade luften får passera en molekylsikt som avlägsnar spår av vatten och klodioxid som annars kan plugga igen rören eftersom de övergår i fast form.

Denna flytande luft får sedan genomgå fraktionerad destillation och då får man de tre gaserna med hög renhet (99,9%).

Separation med hjälp av zeoliter

Zeoliter är lermineraler med en struktur som innehåller porer i molekylstorlek. Zeoliter kan därför fungerar som en molekylär "svamp" som binder upp gaserna. Metoden att separera luftens gaser med zeoliter fungerar vid rumstemperatur och fodrar därför ingen kylning.

Gaserna binder till zeoliten när trycket ökas. Eftersom de olika typerna av gaser binder olika lätt, så kan man selektivt fånga upp gaserna genom att applicera rätt tryck. För att få loss den adsorberade gasen så räcker det att lätta på trycket igen.

Separation med hjälp av membran

Inte heller membrantekniken kräver någon nedkylning. Membranerna fungerar som filter som skiljer stora molekyler från små. De små molekylerna kan passera genom membranet, medan de stora hindras.

Membraner av polymera filmer kan användas för att anrika syret till mellan 25 % och 50 %. Keramiska membraner är effektivare och kan ge en renhet på upp till 90 % syre, men kräver å andra sidan höga temperaturer på 800-900 °C för att metoden ska fungera.

Gas

Gaser har speciella egenskaper som skiljer dem från vätskor och fasta ämnen. I en gas är avståndet mellan partiklarna mycket större än i en vätska. Avståndet är så stort att det inte finns några intermolekylära krafter som håller ihop partiklarna. De rör sig med stor hastighet, oordnat och fritt från varandra.

Gastryck av molekylernas kollisioner

En molekyl är väldigt liten, men det finns väldigt många! Varje gång en molekyl stöter emot ytan, på en burk t ex, så ger den en liten rekyl som tenderar att stöta bort föremålet. Alla molekylernas stötar ger tillsammans ett tryck som är större än man normalt föreställer sig. Vid normalt lufttryck är kraften 1000 N per dm2. Det motsvarar tyngden av 100 kg på varje kvadratdecimeter eller tyngden av 10 ton på varje kvadratmeter!

Att inte burkar, människor, fotbollar med mera trycks ihop av de väldiga krafterna beror på att det finns ett mottryck inifrån som är lika stort.

I figuren nedan ser man att det är fler molekyler som kolliderar med väggen på vänster sida än på höger. Gastrycket är alltså högre på vänster sida om väggen.

Gastrycket orsakas av molekylernas många små stötar. Gastrycket till vänster om väggen är högre därför att det är fler kollisioner.
Bild: © Svante Åberg

Kollisionerna på ömse sidor om väggen är ungefär lika kraftiga, vilket betyder att partiklarna rör sig ungefär lika fort. Man kan alltså dra slutsatsen att temperaturen är densamma på båda sidor om väggen.

Temperatur, kärlets volym och substansmängden påverkar trycket

Partiklarna kolliderar med varandra och med det omgivande kärlet. Det utgör gasens tryck. Trycket hos en gas beror på flera saker:

Alltså, trycket är proportionellt mot absolut temperatur och substansmängd och omvänt proportionellt mot volymen. Detta kan sammanfattas i Allmänna gaslagen.

Allmänna gaslagen:
pV = nRT
p = tryck, Pa
V = volym, m3
n = substansmängd, mol
T = temperatur, Kelvin
R = proportionalitetskonstant = 8,3145 J K-1 mol-1

Molvolym

Gasmolekylernas sammanlagda volym är väldigt liten i förhållande till gasens totala volym. Detta gör att en viss substansmängd av i stort sett alla gaser har samma volym vid samma tryck och temperatur. Gaserna har samma molvolym, och vid standardtryck och standardtemperatur (STP: p = 1 atm = 101,325 kPa = 1,01325 bar, T = 25 °C = 298,15 K) är molvolymen 24,47 dm3/mol.

Gasens densitet

Enklast är att räkna på en mol av gasen. Till exempel väger en mol koldioxid (CO2) 12,0 g + 2·16.0 g = 44,0 g. Vid standardtemperatur och tryck (se ovan) är molvolymen 24,47 dm3. Då är densiteten 44,0 g/24,47 dm3 = 1.80 g/dm3.

Luft består till ungefär 20% av syrgas (O2) och 80% kvävgas (N2). En mol syrgas väger 2·16.0 g = 32.0 g. En mol kvävgas väger 2·14.0 g = 28.0 g. En mol luft innehåller 0,20 mol syre och 0,80 mol kväve. En mol luft väger då 0,20·32,0 g + 0,80·28,0 g = 28,8 g. Vikten genom molvolymen blir då 28,8 g/24,47 dm3 = 1.18 g/dm3.

Dessa två beräkningar visar att koldioxid är tyngre än luft. Därför sjunker koldioxid till marken när den släpps ut i luften.

En motsvarande beräkning av densiteten för vattenånga (H2O) ger densiteten 18,0 g/24,47 dm3 = 0,73 g/dm3. Man kan alltså se att vattenångan är mycket lättare än luften. Därför stiger vattenånga som avdunstar från marken och vattendragen uppåt i osynliga bubblor av ånga. När vattenångan kommit tillräckligt högt är temperaturen så låg att den kondenserar till vattendroppar och blir synlig i form av moln.

Gaspartiklarnas rörelseenergi

Gaspartiklarna rör sig slumpmässigt, men i genomsnitt har de en rörelseenergi som motsvarar temperaturen. Ju högre temperaturen är, desto snabbare rör sig partiklarna. Temperaturen är därför ett mått på gaspartiklarnas rörelseenergi.

När man har en blandning av gaspartiklar som väger olika mycket, så får olika tunga partiklar ändå samma genomsnittliga rörelseenergi. Det innebär att tunga gaspartiklar rör sig långsammare än lätta gaspartiklar, annars skulle inte rörelseenergierna vara lika.

Till exempel rör sig vätemolekyler (H2) med molekylmassan 2 u 3.74 gånger snabbare än kvävemolekyler (N2) med molekylmassan 28 u. Man skulle kunna tro att vätet skulle röra sig 14 gånger snabbare eftersom kvävet är 14 gånger tyngre, men rörelseenergin är proportionell mot kvadraten på hastigheten. Därför blir kvoten mellan hastigheterna √ 28/2 = √ 14 = 3.74.

Gaslagar

Volymen och/eller trycket hos en gas varierar med temperaturen. Det beror på att med ändrad temperatur ändras gasmolekylernas rörelsehastighet. Om temperaturen sänks avtar hastigheten, krockarna mellan molekyler och molekyler och väggar blir mildare och rekylerna mindre. Om väggen kan krympa (t.ex. i en ballong) minskar volymen.


Gastrycket hos den inneslutna luften i ballongen balanseras precis av lufttrycket utanför ballongen plus ballongens elastiska sammandragning. Ifall luften är innestängd i en plastpåse som bara är delvis fylld, så bidrar inte påsen med något eget tryck, utan det är enbart det yttre lufttrycket som balanseras.
Bild: © Svante Åberg

Volymen och/eller trycket beror också på substansmängden gas, dvs. hur många mol gas vi har. En större mängd kräver antingen större volym eller ger högre tryck.

För att uttrycka sambanden mellan olika tryck, volym, temperatur och substansmängd hos gaser används följande beteckningar och enheter:

p = tryck (N/m2)
V = volym (m3)
T = absolut temperatur (K)
n = substansmängd (mol)
R = proportionalitetskonstant i allmänna gaslagen med värdet 8,314 J K-1 mol-1
k1, k2 osv. = proportionalitetskonstanter i gaslagarna med olika enheter

Allmänna gaslagen (gasernas allmänna tillståndsekvation) sammanfattar sambanden mellan substansmängd, temperatur, tryck och volym till en formel:

p·V = n·R·T (R = 8,314 J K-1 mol-1)

Evangelisto Torricello

Gaslagarna började undersökas 1643. Det började med barometern och en man som hette Evangelisto Torricello (1608-1647). Torricello använde kvicksilver för att tillverka den första barometern 1643.

Torricello fick ingen gaslag uppkallad efter sig. Däremot blev han ärad genom enheten Torr för tryck. En Torr motsvarar en mm av kvicksilverpelaren i hans barometer.

Boyles gaslag - trycket gånger volymen är konstant

Detta ledde till att Robert Boyle (1627-1691) kunde upptäcka sambandet mellan tryck och volym. År 1622 publicerade Boyle det som idag är känt som Boyles lag, dvs. att volymen av en gas är omvänt proportionell mot det absoluta trycket. Det kan också uttryckas som att produkten av trycket och volymen är konstant.

Sambandet mellan tryck och volym visas i Boyles lag:

p·V = k1 (vid konstant T och n)

Charles gaslag - volymen är proportionell mot absoluta temperaturen

I slutet av 1700-talet tog Jacques Charles (1746-1823) nästa steg på vägen mot gasernas allmänna lag. Charles gjorde vetenskapliga undersökningar om sambandet mellan trycket och temperaturen hos gaser i slutna behållare med konstant volym och kom fram till Charles lag, men han publicerade aldrig sitt arbete och det var inte förrän 1808 som resultaten publicerades. Han visade att volymen är proportionell mot absoluta temperaturen under förutsättning att trycket hålls konstant.

Sambandet mellan volym och temperatur visas i Charles lag:

V = k2·T (vid konstant p och n)


När man prickar in de experimentellt erhållna värdena för volym och temperatur kan man extrapolera den räta linjen till absoluta nollpunkten.
Bild: © Svante Åberg

Gay-Lussacs gaslag - trycket är proportionellt mot absoluta temperaturen

Resultaten publicerades då av Joseph Gay-Lussac (1778-1850) som hade gjort de slutliga mätningarna. Gay-Lussac fortsatte att undersöka sambandet mellan volymen och temperaturen hos inneslutna gaser vid konstant tryck och idag finns Gay-Lussacs lag uppkallad efter honom.

Sambandet mellan tryck och temperatur visas i Gay-Lussacs lag:

p = k3·T (vid konstant V och n)

Dalton gaslag - det totala gastrycket är summan av partialtrycken för de enskilda gaserna i en blandning

Daltons lag presenterades 1801 av John Dalton (1766-1844): det totala trycket av en blandning av är lika med summan av det partiala trycket av varje enskild gas. Partialtrycket är trycket som varje gas skulle utöva om det ensam befann sig i samma volym som de blandade gaserna med samma temperatur.

Sambandet mellan partialtrycken och det totala trycket visas i Daltons lag:

p = p1 + p2 + p3 + ... (vid konstant T och V)

Avogadros gaslag - volymen är proportionell mot substansmängden

År 1811 publicerade Amadeo Avogadro (1776-1856) en artikel som presenterade att alla gaser vid samma temperatur och tryck, lika volymer av olika gaser innehöll samma antal molekyler. Denna idé ignorerades i nästan 50 år och det var inte förrän Stanisalo Cannizaro 1860 presenterade Avogrados arbete som man erkände det. Idag kallas en mol för Avogadros konstant. Genom denna upptäckt börjar vår moderna syn på gaser.

Sambandet mellan volym och substansmängd visas i Avogadros lag:

V = k4·n (vid konstant T och p)

Allmänna gaslagen

Alla dessa samband kan sammanföras i den allmänna gaslagen eller gasernas allmänna tillståndsekvation:

p·V = n·R·T (R = 8,314 J K-1 mol-1)
Ideala gaser

Den allmänna gaslagen har vissa begränsningar. Den förutsätter att gasmolekylerna inte påverkar varandra. Vid höga tryck eller temperatur nära kondensationspunkten får de så låg energi eller kommer så nära varandra att detta inte gäller. Man har infört begreppet ideala gaser för de tänkta gaser som inte har några intermolekylära krafter. I den ideala gasen antas också att själva gasmolekylerna saknar volym.

Mer om vetenskapsmännen bakom lagarna

Det verkar ha rått delade meningar under olika tider och i olika länder om vilken vetenskapsman som ska namnge vilken lag. En presentation av männen ger en inblick i naturvetenskapens utvecklingshistoria under tre sekler.

Robert Boyle

Boyle var son till en brittisk earl och levde 1627-1691. Han studerade både i hemlandet och i Genève och Florens. Boyle ägnade mycket tid åt experiment, något som inte var så vanligt på den tiden. Studier av fysikaliska och kemiska fenomen i lufttomt rum studerades, bl.a. Boyles tankar runt hur små enheter av materia förenas i bestämda grupperingar var början till molekylbegreppet.

Jacques Charles

Charles var fransman och levde 1746-1833. Han blev professor i fysik och var pionjär på ballongflygningens område.1783 gjorde han den första uppstigningen med sin egenhändigt konstruerade vätgasballong. Han ägnade bl.a. sin forskning åt att studera hur gasers volym påverkas av temperaturen.

Joseph-Louis Gay-Lussac

Gay-Lussac var också fransman och professor i fysik. Han levde 1778-1850. Gay-Lussac gjorde ballonguppstigningar och tog luftprover från olika höjder. Han upptäckte att väte och syre förenades till vatten i volymförhållandet 2 till 1 och fortsatte att studera gasreaktioner. Vidare förbättrade han framställningstekniken för natrium, kalium och svavelsyra och upptäckte grundämnet bor.

John Dalton

Dalton som levde 1766-1844 är känd som den moderna atomteorins grundare. Den formulerades i början av 1800-talet och stod sig i nästan 100 år. Dalton observerade viktförhållandet mellan olika ämnens minsta partiklar och detta ledde honom till atomteorin. Han antog att grundämnen bestod av med en för ämnet karaktäristisk massa. Dalton skrev meteorologisk dagbok i 57 år och gjorde undersökningar på partiell färgblidhet.

Amadeo Avogadro

Italienaren Avogadro, som levde 1767-1856, var först jurist och ämbetsman. Han blev, efter att ha bytt bana, professor i naturfilosofi och fysik. Inspirerad av Gay-Lussacs studier av gasers volymförhållanden vid kemiska reaktioner formulerade han tesen att alla gaser vid samma tryck och temperatur innehåller samma antal molekyler. Detta accepterades på 1860-talet.

Avogadro har fått ge namn åt Avogadros konstant, antalet molekyler eller partiklar i substansmängden en mol.

Luftens löslighet i vatten

Luften innehåller framför allt kvävgas och syrgas, men även små mängder av argon och koldioxid. Gaserna i luften har en viss löslighet i vatten. Lösligheten beror på vilken gas det är. Koldioxiden har en särskilt hög löslighet i vatten.

Men koncentrationen av gasen i luften påverkar också hur mycket som löser sig i vattnet. Gasen i luften och gasen i löst form i vattnet står i jämvikt. Ju mer det finns i luften, desto mer löser sig i vattnet.

I vattnet finns därför mest kvävgas, därefter syrgas och sedan löst koldioxid. Koldioxiden reagerar också med vattnet och bildar kolsyra.

Salthalten i vattnet minskar gasernas löslighet. Därför är det lite mindre lösta gaser i havsvatten än i sötvatten.

Temperaturen är också viktig. Gasernas löslighet minskar snabbt med ökande temperatur. Det kalla vattnet vintertid kan innehålla betydligt med syre än det varma sommarvattnet. Vissa fiskarter, såsom laxfiskarna, är särskilt syrekrävande. De klarar sig därför inte i varma vatten.

Henrys lag

När man ska räkna på löslighet av gaser i en vätska används med fördel Henrys lag. Till exempel för att få reda på koncentrationen av syrgas i vattnet i en sjö eller koldioxidhalten i blodplasman. Lagen lyder: Vid konstant temperatur är lösligheten av en gas i en vätska proportionell mot gasens tryck. För ämnet A gäller

pA = kA·cA
där pA gasens ångtryck över lösningen, cA är koncentrationen av löst gas A och kA är en proportionalitetskonstant som är beroende av lösningsmedlet och det som ska lösas.

För koldioxid är värdet på kA = 2,98·106 dm3Pa/mol när lösningsmedlet är vatten vid 25 °C.

Koldioxiden har särskilt hög löslighet i vatten

Koldioxid är i rumstemperatur en färglös gas som är 1,5 gånger tyngre än luft vid samma tryck och temperatur. Gasen är doftlös och har en sur smak. Smaken uppkommer då koldioxid reagerar med saliv och bildar kolsyra (H2CO3). Koldioxid är den stabilaste av kolets oxider och är slutprodukten när kol och koloxider reagerar med luft eller syre. Koldioxiden lär lättlöslig i vatten. Vid 15 °C och normalt lufttryck kan man lösa nästan 1 liter koldioxid i 1 liter vatten om man har ren koldioxid ovanför vattenytan.

gas andel i luft andel i vatten
N2 78 % 51 %
O2 21 % 31 %
CO2 0,038 % 18 %

Av luftens gaser är det framför allt kväve, syre och koloxid som löser sig i vattnet. Koldioxiden är den överlägset mest lösiga gasen i vatten, syre därnäst och kväve minst. Lösligheten av "luft" ger dock omvända ordningsföljden därför att den lösta gasen i vattnet står i jämvikt med samma gas i luften. Eftersom halten koldioxid i luften bara är 0,038 %, så blir trots allt halten koldioxid i vattnet ganska liten. I luften finns 78 % kvävgas och 21 % syrgas, vilket gör att trots marginellt lägre löslighet för kvävgas i vatten än för syrgas, så är den absoluta halten kvävgas i vattnet högre.

En anledning till att koldioxid löser sig förhållandevis bra i vatten är att den reagerar med vattnet och bildar en svag tvåprotonig syra, kolsyra (H2CO3). Syran protolyseras sedan vidare till vätekarbonat (HCO3) och karbonatjoner (CO32−). Vi har alltså kopplade jämvikter mellan luftens koldioxid och karbonatet som bildas i lösningen:

CO2(g) ⇄ CO2(aq) ⇄ H2CO2(g) ⇄ HCO3 ⇄ CO32−

Det är dock bara en liten del av syran som protolyseras när koldioxid löser sig i rent vatten, större delen av kolsyran finns löst som CO2(aq). Men om vattnet är basiskt ökar lösligheten dramatiskt. Kolsyran neutraliseras nämligen av basen och jämvikten drivs kraftigt åt höger.

Temperaturberoendet hos gasers löslighet

Lösligheten av koldioxid, och andra gaser är beroende inte bara av trycket, utan även av temperaturen. I vatten gör lägre temperatur att lösligheten för gasen ökar.

Luftens löslighet i sötvatten vid olika temperaturer.
Koldioxiden (trianglar) har oproportionerligt hög löslighet med tanke på hur låga halterna är i atmosfären. Men man kan också se en trend att koldioxidens löslighet blir relativt sett sämre vid högre temperatur. Vid 0 °C är lösligheten 50% av syrets, men vid 50 °C är den bara 30% av syrets löslighet i vatten.
Bild © Svante Åberg

Lösligheten för gaserna minskar kraftigt med temperaturen, se diagrammet ovan. När man värmer upp vattnet drivs gaserna ut. De första bubblorna man ser när vattnet börjar sjuda är lösta gaser som inte kan hållas kvar lösta i vattnet på grund av stigande temperatur. När vattnet kokar, är det inte gaser som avgår utan vatten som omvandlas till vattenånga och bubblar upp.

När vatten värms upp utan att gaserna får möjlighet att avgå bildas en övermättad lösning. Det vill säga vattnet håller mer gas än vad som möjligt. Detta är vad som sker när man värmer vatten i mikrovågsugnen till 100 grader. Då skulle normalt så gott som all gas vara löst ur vattnet. Men i en mikrovågsugn värms vattnet lika mycket i hela koppen och då cirkulerar inte vattnet och gaserna kommer inte upp till ytan och kan inte avges. Därför kan det brusa om till exempel en tepåse, eller om man rör i en kopp med vatten som blivit värmd i mikrovågsugnen. Detta skiljer sig mot att värma vatten i en kastrull, då cirkulerar vattnet på grund av att det är varmare i mitten av kastrullen än på kanterna. Varmt vatten stiger, svalnar något och sjunker längs med sidorna på kastrullen. Cirkulationen gör att gaserna hela tiden kan avges till luften ovanför.

Observera att sambandet att lösligheten minskar med ökande temperatur gäller i vatten, men inte i organiska lösningsmedel. I organiska lösningsmedel ökar lösligheten för gaserna med temperaturen.

Övermättad lösning

Ett exempel på övermättad lösning är när man kokar vatten i en mikrovågsugn. När du sedan stoppar ned tepåsen, så kanske du upptäcker att det börjar skumma. Det är överskottet av lösta gaser som avgår. Vattnet blev övermättat på gas genom att lösligheten för gaserna minskade när temperaturen ökade.

Litteratur

  1. Dykarklocka, Axel Nelson, Axels fartygshistoria
    http://www.axelnelson.com/skepp/bell.htm (2017-09-07)
  2. Följ med en dykare som visar hur Boyle's lag fungerar, Vattenplaneten
    http://www.vattenplaneten.se/?p=1304 (2017-09-07)
  3. Ideal gas law, Wikipedia
    https://en.wikipedia.org/wiki/Ideal_gas_law (2017-09-05)
  4. Ideal Gas Law, Hyper Physics
    http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/idegas.html (2017-09-05)
  5. Gas laws, Wikipedia
    https://en.wikipedia.org/wiki/Gas_laws (2017-09-05)
  6. The Historical Gas Laws, Jeff Altig, New Mexico Tech
    https://infohost.nmt.edu/~jaltig/HistoricalGasLaws.pdf (2017-09-05)
  7. Looking for a Gas, Chem4Kids
    http://chem4kids.com/files/matter_gas.html (2017-09-07)

Fler experiment


aggregationsformer
Avdunstning och temperatur
Badbomber
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
En märklig planta
Exempelfil_Försvinnande bläck (Erik Lövbom)
Fryspunktsnedsättning
Förtenning
Gore-Tex, materialet som andas
Gör ditt eget läppcerat
Gör ett avtryck från papper till stearin
Hockey-visir
Hur fungerar en torrboll?
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Kemi i en brustablett
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Lödtenn 60
Molnet i flaskan
Myggmedel - hur funkar det?
Osynlig gas
Platta yoghurtburkar
Popcorn
Salta isen
Saltat islyft
Slime
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Studsboll
Syrehalten i luft
Tillverka en parfym och gör doftande skraplotter
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenvulkan
Ägget i flaskan

fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Snöflingeskådning
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

gaser
Blåsa ballong med hjälp av PET-flaska
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Försvinnande bläck
Gasvolym och temperatur
Ljuset under glaset
Mentos-pastiller i kolsyrad läsk
Osynlig gas
Syrehalten i luft

urval reviderat experiment
Anodisering och färgning av aluminium
Avdunstning och temperatur
Citronbatteri
Den brinnande sedeln
Den tillknycklade plåtburken
DNA ur kiwi
Elektrokemisk skrift
Gasvolym och temperatur
Indikatorpapper för plus och minus på batteriet
Innehåller koksaltet jod?
Luftfuktighet och rostbildning
Rengöra silver
Rostbildning och rostskydd
Rostindikator visar var järnet rostar
Syrehalten i luft
Tag bort rost med elektrisk ström
Testa C-vitamin i maten
Vad händer när degen jäser?
Åka hiss