Snöflingeskådning

Tillhör kategori: aggregationsformer, fysikalisk kemi, vardagens kemi

Författare: Susanne Rostmark

Introduktion Riktlinjer Säkerhet Materiel Förarbete Utförande Förklaring Kemisk bakgrund Fördjupning Litteratur Fler experiment

Tid för förberedelse: 10 minuter

Tid för genomförande: 20 minuter

Antal tillfällen: 1

Säkerhetsfaktor: Ofarligt

Svårighetsgrad: Busenkelt

Introduktion

En man som kallades "Snöflingan" Bently ägnade 40 år av sitt liv åt att studera och fotografera snöflingor. Trots att han studerade så många flingor hittade han inte två som var likadana. I det här experimentet skall du få undersöka om det påståendet är sant.

Riktlinjer

Försöket genomförs som elevförsök.

Säkerhet

Försöket är helt ofarligt och det blir inget avfall.

Materiel

Förarbete

Kyl ner kartongen så att flingorna inte smälter.

Utförande

Vänta in ett bra snöfall. Bra snöfall infaller vid ca 0 °C,då är flingorna stora och fluffiga.

  1. Förse dig med ett ark kall svart kartong och en lupp eller ett förstoringsglas, gå ut.
  2. Lägg papperet på marken och låt några snöflingor landa på det.
  3. Titta på flingorna med din förstoringshjälp; Finns det två likadana? Finns det några speciella särdrag?
  4. När du kommer in ritar du en schematisk bild av snöflingorna du sett.

Variation

I stället för att fånga snöflingor kan flingor som tidigare fastnat på exempelvis bilrutor undersökas. Man kan upprepa försöket vid olika vädersituationer och se om man lyckas fånga en nu typ av snöflingor.

Förklaring

Snökristaller bildas då några få vattenmolekyler fryser ihop och bildar en kristall. Eftersom kristallen växer fryser fler och fler molekyler fast i den. Molekylerna fastnar då i samma kristall mönster som de första molekylerna bildade. Grundformen för en snökristall är ett sexsidigt prisma, sedan är det temperaturen, vinden och luftfuktigheten som bestämmer hur kristallen utvecklas. Det finns inte två likadana snöflingor men det går att utskilja sex olika grundformer.

Kemisk bakgrund

Vy för utskrift av kemisk bakgrund och fördjupning

Vattenmolekylen

Bindningar i vatten Vatten är en unik vätska eftersom den har en högre smältpunkt, kokpunkt och förångnings värme än de flesta andra vätskor. En vattenmolekyl består av två väteatomer som är bundna till en syreatom. Vinkeln som molekylen bildar uppgår till 104,5 ° och bestäms av syreatomens yttre atomorbitaler. Väte- och syreatomen hålls ihop av kovalenta bindningar [6,7].

Det finns dessutom starka attraktionskrafter som håller samman molekylerna. Grunden till det är att syrearomens kärna är mer elektronegativ än väteatomens, därför attraherar den elektroner starkare. Det betyder att elektronerna oftare befinner sig i närheten av syreatomen och att det råder elektron brist vid väteatomerna. Elektronfördelningen gör att det uppkommer starka elektrostatiska krafter mellan syreatomerna i en vattenmolekyl och väteatomerna i en annan. Denna elektrostatiska bindning kallas vätebindning och är svagare än kovalenta bindningar [6,7]. Om inte väte bindningen fanns skulle vatten inte frysa förrän vid minus 100 °C [8].

Tips för läraren! När man ska illustrera vätebindningar och varför is tar större plats kan man utnyttja eleverna som illustrationsmaterial. Låt några eleverna sträcka ut armarna och knyta händerna, förklara att kroppen utom armarna är en syreatom och att armarna är de kovalenta bindningarna, de knutna händerna är väteatomer. Låt sedan eleverna gå samman så tätt som möjligt. Låt sedan eleverna gå samman i kristallstruktur. Dvs alla skall försöka lägga händerna på en annan elevs huvud, högst två händer per huvud. Vilken formation tog mest plats?


I flytande vatten som håller rumstemperatur bildar varje vattenmolekyl i genomsnitt 3,4 vätebindningar till andra vattenmolekyler, livstiden för vätebindningarna är dock kort (mindre än 1 ns) [7]. När vatten fryser till is bildar varje vattenmolekyl 4 vätebindningar till andra molekyler, det bildas då ett regelbundet kristallmönster bestående av sexkantiga ringar. Det regelbundna kristallmönstret gör att is tar större plats än vatten; is är inte lika kompakt som vatten och därför flyter is. [2,3,7]

Redan på 1600-talet upptäckte den tyske astronomen att alla snöflingor är sexkantiga. Näste store snöforskare kom från Tjeckien och hette Ukichiro Nakaya . Han var den förste att dokumentera alla de olika typer av snökristaller som finns. 1954 gav han ut en bok med 2000 snöflingor [8].

Ordet snöflinga väcker hos de flesta bilden av den stjärnformade typen av flinga. Stjärnformen kallas en dendritisk snökristall och är bara en av sex former, varje form uppträder bara under speciella förhållanden.

Snökristallen börjar med att några få vattenmolekyler fryser ihop och bildar en kristall. Kristallen växer då den fryser in fukt i luften runt omkring sig. Varje "ny" vattenmolekyl fogas samman med resten men den grundläggande kristallstrukturen bibehålls. Till att börja med bildas en flat hexagonal med form som ett sexsidigt prisma. Beroende på temperatur, vind och fukt utvecklas olika typer av kristaller [1, 2, 3, 4, 8].

Plattor

Om luften är torr kommer kristallen inte att kunna växa sig stor utan den behåller det grundläggande formen av ett sexsidigt prisma. De bildas vid temperaturer mellan -10 och -20 grader Celsius [3].

Stjärnor

Stjärnkristaller bildas vid temperaturer nära -15 °C och är den vanligaste typen. Stora stjärnflingor är ovanliga eftersom de är väldigt sköra och lätt bryts sönder vid kollisioner. Under ideala förhållanden kan många stjärnor fogas samman och bilda stora snöflingor. Rekordet kommer från Bratsk, Sibirien där man 1971 såg snöstjärnor lika stora som A4-ark [3,4].

Dendriter

Dendriter är tredimensionella stjärnkristaller med grenar som växer i mer än ett plan. Dessa komplexa kristaller bildas vid hög luftfuktighet och -20 till -25 graders kyla [3].

Pelare

I torr luft och i temperaturer mellan -15 och -25 °C bildas pelare. Pelarna är mindre och kompaktare än stjärnor.

Pelare med plattor

Ibland kombineras de två flingtyperna pelare och plattor. Det sker då snöpartiklar passerar olika temperatur och fukt zoner. Pelarna bildas först och kombineras med plattorna längre ned i molnet [3].

Nålar

Vid mildare väder bildas nålar. Nålar växer till då marktemperaturen är nära noll och luft temperaturen är mellan -5 och -10 grader [3].

Eftersom förhållandena varierar i de olika luftlagren en kristall passerar på vägen ned kan ett snöfall innehålla flera olika typer av kristaller [8].

Kristalltyper

Det finns 1 000 000 000 000 000 000 vattenmolekyler i en normal snöflinga. [3,8]

Hur nederbörd bildas

Mängden vattenånga i som finns i luft avgör humiditeten. Humiditeten varierar men det finns en gräns för hur mycket vattenånga luft av en viss temperatur kan hålla detta max kallas för daggpunkten. Varm luft kan hålla mer vattenånga än kall. Det gör att det inte snöar så mycket då det är kallt.

När moln bildas måste fuktig varm luft stiga och avkylas. På den nivå över marken som daggpunkten är lika med omgivande lufttemperatur så kommer fuktigheten att kondenseras till vattendroppar. Kondensationen sker på små dammkorn i luften, dessa kallar man kondensationskärnor. Om det är kallare än noll grader bildas snö. Början till en snöflinga bildas i molnet, sedan förs den runt med vinden tills den vuxit sig så tung att den faller mot marken. Processen kan ta flera dagar [10].

Varför blir det varmare när det börjar snöa?

Du har säkert märkt att det blir varmare när det snöar, anledningen till det hittar vi i termodynamiken. När vattenmolekylerna övergår från flytande till fast fas frigörs värme. Det gör att luften blir varmare [6].

Fördjupning

Aggregationsform

Faserna och fasövergångarna

Allt som finns runtomkring oss är antingen fast, flytande (vätska) eller i gasform. Dessa former kallas aggregationsformer (aggregation = hopklumpning) eller faser. Atomerna (eller molekylerna) i de olika faserna har olika stort energiinnehåll, olika stor rörelse, och har därför olika volym.

Fast form vid låg temperatur

Vid den absoluta nollpunkten, -273°C = 0 K, finns ingen atomrörelse (K är Kelvin, enheten för absolut temperatur). Alla ämnen är fasta och atomerna ligger regelbundet ordnade så tätt som möjligt. Om temperaturen höjs börjar atomerna vibrera kring sina jämviktslägen. Det fasta ämnet behåller sin form och inom måttliga temperaturintervall och volymen är nästan konstant. Massan är densamma.

Den lilla utvidgning som sker vid värme kan räcka för att lossa en mutter genom att värma på den. Förr var man tvungen att lägga järnvägsräls med mellanrum i skarvarna, för att undvika att rälsen böjde sig under varma dagar, s.k. solkurva. Nutidens järnvägsräls läggs av en formbeständigare metallblandning.

Övergår till vätska (blir flytande) när temperaturen når smältpunkten

När temperaturen stiger ytterligare rubbas atomerna ur sina jämviktslägen. De börjar glida i förhållande till varandra och har blivit en vätska. Fasövergången sker vid smältpunkten. Så länge det finns fast material ligger temperaturen kvar på smältpunkten och stiger inte, även om man tillför värme. Det beror på att all energi går åt till fasövergången. Vätskor ändrar form efter de kärl de förvaras i och har i allmänhet något större volym än samma ämne i fast form (Känt undantag är is, som har större volym än samma mängd vatten pga lucker kristallstruktur hos isen). Mellan molekylerna i vätskan finns sammanhållande krafter. Massan är densamma i vätskan som i den fasta fasen.

Övergår till gas när temperaturen når kokpunkten
En gas fyller upp hela det kärl som den förvaras i.
Bild: © Svante Åberg

Om temperaturen i vätskan höjs, ökar molekylernas rörelseenergi och till slut får några så stor energi att de lämnar den flytande fasen. Övergången från vätska till gas sker när temperaturen nått kokpunkten. Det har bildats en gas. Gasen har ingen bestämd form. Den anpassar sig efter det utrymme den finns i, eftersom molekylerna är helt fria från varandra och färdas rakt fram ända till dess de stöter på någonting, som kan vara kärlets väggar. De krockar också med varandra och byter riktning men dessemellan färdas de "långa" sträckor i absolut tomrum. Gasen har mycket större volym än samma mängd ämne i flytande form och molekylerna i en gas är så långt ifrån varann att de inte påverkar varann. Därför blandas olika gaser lätt. Volymen hos en gas är beroende av temperaturen. Med högre temperatur ökar molekylernas rörelsehastighet, krockarna mellan molekylerna och väggarna blir hårdare. Kollisionerna med väggarna är det vi kallar tryck. Kan väggen utvidgas ökar volymen, i annat fall ökar trycket. Massan är densamma.


Fasövergångarna har bestämda namn. När temperaturen öker sker smältning och förångning (kokning). När temperaturen minsakar sker de motsatta processerna som kallas kondensation och stelning. Observera att smältpunkten och stelningspunkten är exakt samma temperatur. På motsvarande sätt är kokpunkten och kondensationspunkten (för den rena gasen) samma temperatur.

Sublimering


Fasdiagram för koldioxid.
Ben Finney Mark Jacobs: CC0

Fasta ämnen kan övergå direkt till gas utan att först bli vätska. Förutsättningen är att temperatur och tryck befinner sig under ämnets trippelpunkt i ett fasdiagram. Man säger att ämnet sublimerar. Det är en endoterm process, dvs. en process som kräver energitillförsel. Oftast tas energin i form av värme från om givningen, vilket innebär att temperaturen sjunker.

Den motsatta processen när gas övergår direkt till fast form utan att först bilda en vätska kallas desublimering eller deposition. Den processen är exoterm, dvs. avger energi, vanligen i form av värme. Även denna process kan bara ske när tryck och temperatur ligger under ämnets trippelpunkt.

Superkritisk vätska

Över en viss temperatur och visst tryck går det inte längre att urskilja någon fasgräns mellan vätska och gas. Densiteten är hög, praktiskt taget som hos en vätska. Den höga temperaturen får molekylerna att fritt röra sig mellan faserna så att fasgränsen upplöses.

Den superkritiska vätskan har egenskaper utöver det vanliga. Den har förmåga att diffundera genom många fasta material på samma sätt som en gas gör. Samtidigt har den förmåga att lösa ämnen på samma sätt som en vätska gör. Förmågan att fungera som lösningsmedel gör att den i vissa tillämpningar kan ersätta organiska lösningsmedel, till exempel i extraktioner.

Koldioxid är ett ämne som ofta används i tillämpningar med superkritiska vätskor.

Plasma är en fjärde aggregationsform

De tre vanliga aggregationsformerna fast, flytande och gas bestäms av bindningarna mellan atomerna eller molekylerna. Ju varmare det är, desto lösare är atomer och molekyler kopplade till varandra.

Men vid tillräckligt hög temperatur sker någon helt annorlunda, nämligen att elektroner i atomerna slits loss och man får en blandning av positiva atomjoner och fria elektroner. Det är en typ av gasblandning som är elektriskt ledande.

Solen innehåller plasma

Sådan plasma finns i solens atmosfär. Eftersom den är elektriskt ledande, så fångar plasman också upp de starka magnetfälten från solens inre. Vid soleruptioner slungas plasma ut i världsrymden och man kan se hur magnetlinjerna i plasman håller samman plasman i böljande stråk. Dessa utkastningar av laddade partiklar strålar sedan vidare ut från solen och når så småningom jorden. Eftersom rymden är så tom har elektronerna och atomjonerna svårt att hitta varandra igen och återförenas till normala atomer. Därför är partikelstrålningen från solen elektriskt laddad. När partiklarna kommer in i jordens magnetfält tunnlas de ned via magnetfälten vid nord- och sydpolen. När de laddade partiklarna kommer ned till jordatmosfären sker kollisioner med luftens atomer och molekyler. De energier som då utvecklas ger det norr- och sydsken som man kan se mörka, klara vinternätter.

Andra exempel på plasma

I blixtar blir också temperaturen tillräckligt hög för att luftens atomer ska bilda plasma. Det gör att elektriska urladdningar kan ske via blixtens väg mellan molnen och jorden.

En eldslåga innehåller plasma. Faktiskt avger en stearinljuslåga joner till den omgivande luften. Dessa joner kan urladda statisk elektricitet. Om du har en dammvippa av syntetiska fibrer och du har laddat upp den med statisk elektricitet, så kan du observera vad som händer om du närmar den ett brinnande ljus. Redan på håll, så urladdas den statiska elektriciteten. Det beror på att jonerna accelereras till vippan av det elektriska fältet kring den statiskt uppladdade vippan. Detta experiment fungerar bara om luften är tillräckligt torr, annars kan man inte ladda upp vippan. Därför fungerar experimentet bäst vintertid då inomhusluften är torrare.

Konstgjord plasma finns också i lysrör och i plasmaskärmar för datorer.

Fasövergångar och bindningar

Det är lätt att konstatera att smält- och kokpunkter för ämnen kan variera mycket. Vissa ämnen är svåra att tänka sig på annat än ett sätt till vardags. Sten, koksalt och stål är fasta, bensin och alkohol är flytande och luft och gasol är gaser. Många vet också att i extrema fall, t ex i vulkaner, flyter mineralerna (stenen) och att när man svetsar flyter stålet. Det enda ämne man i vardagen möter i alla tre aggregationsformerna är vatten.

Starka bindningar ger höga smält- och kokpunkter

Mineraler och metaller är alltså exempel på ämnen med hög smältpunkt. Att det är så beror på styrkan hos de bindningar som håller ihop ämnena. Alla salter är uppbyggda av joner.

Attraktionskraften mellan positiva och negativa joner, jonbindning, är stark och salter har därför hög smältpunkt.

Mellan de enskilda atomerna i en metall finns metallbindning. Metallbindningen utgörs av de ingående atomernas valenselektroner som bildar ett gemensamt elektronmoln för hela "metallbiten". För att bryta den bindningen krävs mycket energi, vilket ger hög smältpunkt. Ett känt undantag är kvicksilver, en metall som är vätska vid rumstemperatur och alltså har svagare metallbindning.

Även kovalent bindning när atomer delar elektroner kan vara mycket stark. Faktum är att diamant och grafit, kolatomer sammanhållna av kovalenta bindningar har högre smältpunkt än alla metaller.

Svaga bindningar ger låga smält- och kokpunkter

Ämnen uppbyggda av molekyler (eller atomer som i ädelgaserna) har starka kovalenta bindningar mellan atomerna inom molekylerna men svagare bindningar mellan molekylerna. Det gör att smält- och kokpunkten blir relativt låg.

Den svagaste bindningen finns mellan molekyler och atomer är van der Waalsbindning. Den uppkommer pga mycket tillfälligt ojämnt fördelade elektronmoln hos opolära molekyler (atomer). Bindningarna finns både i fast fas och vätskefas. Eftersom bindningen är så svag blir smältpunkten låg, i många fall nedåt eller under -200°C. Den svaga bindningen gör också att skillnaden mellan smält- och kokpunkt blir liten.

Mellan ämnen som är dipoler förekommer dipol-dipolbindning där den positiva polen hos en molekyl attraherar den negativa hos nästa. Smält- och kokpunkten blir låg men högre än med enbart van der Waalsbindning.

För vissa ämnen som är dipoler är smält- och kokpunkten oväntat hög och avståndet mellan smält- och kokpunkten relativt stort. Vatten är ett bra exempel på detta. Det måste bero på starkare bindning än enbart mellan dipoler. De ämnen som har de egenskaperna innehåller alla väte. Vätet är bundet till en fluor-, syre- eller kväveatom, som drar till sig elektronparet i bindningen. Vätet blir positivt och kan attraheras av icke-bindande elektronpar på t ex en syreatom på en intilliggande molekyl. Det bildas en vätebindning. Den är starkare än van der Waalsbindningen och dipol-dipolbindningen. Vätebindningar har stor betydelse för att stabilisera strukturen i bl a proteiner och DNA.

Vatten

Ett ovanligt, men korrekt namn för vatten, är diväteoxid. Den kemiska formeln är alltså H2O. Vatten är det enda kemiska ämne som naturligt förekommer både i fast, flytande och gasform. Det är också ett av de absolut vanligaste ämnena på jorden.

Vattnets ovanliga egenskaper

Vatten har en ovanligt stor förmåga att lagra värme. Oceanerna spelar en viktig roll i jordens klimat genom att stabilisera temperaturerna. Vattenströmmarna i haven transporterar varmt vatten från ekvatorn mot polerna och kallt vatten från polerna tillbaka mot varmare områden. Dessa strömmar djupt ned i havet är som gigantiska osynliga floder som slingrar sig runt hela jordklotet. Strömmarna bidrar också till att transportera näring till områden där djur- och växtliv frodas i överflöd.

Vattnet är tyngst vid +4 °C.
Bild: © Svante Åberg

Vatten har den ovanliga egenskapen att när det fryser (stelnar), så får den fasta formen av ämnet lägre densitet än den flytande. Den lägre densiteten gör att is flyter ovanpå vatten. Tack vare det bottenfryser inte sjöar. I stället lägger sig isen som ett värmeisolerande täcke ovanpå sjöarna och fiskar, grodor och växter kan leva vidare i väntan på nästa vår. Snön som lägger sig ovanpå isen är extra värmeisolerande på grund av att den innehåller mycket luft. Snön är också fruset vatten, men snökristallerna gör att den inte packas så tätt.

Vatten är också ett ovanligt bra lösningsmedel. Det är ett polärt lösningsmedel, vilket innebär att det har förmågan att lösa ämnen som är mer eller mindre laddade. Det medför att vatten kan lösa salter ur jorden och berggrunden, men också att vatten kan lösa de många olika biologiska molekyler som finns i cellerna i djur och växter. Lösta ämnen kan diffundera, dvs. spridas ut i vätskan. Tack vare det kan olika molekyler träffa på varandra i cellvätskorna och reagera. Om molekylerna inte hade denna rörlighet skulle de biokemiska reaktionerna i kroppen stanna av och vi skulle varken kunna röra oss, tänka eller växa.

Vatten har ovanligt hög ytspänning. Ytspänningen gör vattendroppar runda, gör så att skräddare kan gå på vattenytan. Ytspänningen ger också kapillärkraft som hjälper träden kan "dra" upp vatten via sina kärl flera 10-tals meter. Det är mycket mer än när man har en vanlig sugpump. Då är 10 m den maximala höjden man kan pumpa vatten (beroende på att atmosfärstrycket inte motsvarar en högre vattenpelare än så).

Vattnet är livsnödvändigt

Vatten är ett av de allra viktigaste ämnena på jorden. Det är en av huvudbeståndsdelarna i de levande organismerna och i deras omgivning. En mycket stor del av de kemiska reaktionerna på jordytan sker i vattenlösning och detta gäller inte minst livsprocesserna. Vatten är också det oftast använda lösningsmedlet.

Vatten är en mycket stabilt ämne. Det vatten som finns på vår planet är därför till stora delar mycket gammalt, speciellt det som finns på stort djup i marken och bergen. Men trots att vatten är mycket stabilt så deltar det i de kemiska reaktioner som sker i samband med fotosyntes och respiration. Fotosyntes och respiration fungerar som ett kretslopp i naturen. I fotosyntesen kopplas vatten samman med koldioxid när sockerarter och andra organiska ämnen byggs upp. Stärkelse är exempel på en sockerart som växterna bildar för att lagra energi. Cellulosa och lignin som finns i veden är ett annat exempel.

När djur och människor äter växter förbränns maten och sönderdelas till vatten och koldioxid igen. Kretsloppet i naturen är ett nollsummespel där mängden vatten i stort sett inte ändras. Vattnet som binds i växter och djur kommer snart tillbaka ut i naturen igen och bildar moln, regn och vattendrag.

Eftersom vi är så beroende av vatten för att dricka och laga mat, tvätta oss, för bevattning av odlingsmark, i olika industriella processer med mera, så är vattenkvalitén viktig. Vanligen duger bara sötvatten. Men av allt vatten på jorden är bara en mycket liten del sötvatten. Och av sötvattnet är det mesta bundet i glaciärer. Visserligen har vi gott om rent sötvatten i vårt land, men i många länder är rent vatten en bristvara. Det är därför väldigt viktigt att vi inte förorenar det rena sötvatten som finns, utan är rädd om det och använder det på ett förståndigt sätt.

Vattnet blev referens för temperaturskalan

Vattnets fryspunkt är 0 °C och kokpunkten 100 °C vid normalt lufftryck. Det är ju praktiskt och enkelt med så jämna siffror. Det blev så därför att man valde vatten som referens när temperaturskalan skulle definieras på förslag av Anders Celsius åt 1742. I själva verket satte Anders Celsuis 0 °C vid kokpunkten och 100 °C vid fryspunkten, men senare insåg man att det var mer logiskt att ha det högre värdet när det var varmare. På förslag av Carl von Linné vände man på skalan efter Celsius död, så han Anders Celsius fick själv inte veta att det hade hänt.

När man sedan insåg att det finns en absolut nollpunkt på temperaturskalan definierade man Kelvin-skalan. Avståndet mellan värdena i Kelvin-skalan är exakt lika stort som i Celsius-skalan, men de har olika nollpunkter:
0 K = -273.15 °C och 0 °C = + 273.15 K

Vätebindningar karaktäriserar vattenmolekylen

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vattnets polaritet är mycket hög. Polariteten beror på vätebindningar. Vätebindningen är en extra stark dipolbindning som håller samman de olika laddade ändarna hos två vattenmolekyler. Vattenmolekylens syre är lite minusladdad på grund av att syret drar till sig elektronerna i molekylen effektivt. De två vätena är lite plusladdade eftersom de inte drar till sig elektronerna lika bra och den positiva laddningen väteatomens kärna då överväger. Men som helhet är vattenmolekylen oladdad.

Vätebindningarna ger hög ytspänning

Tack vare vätebindningen attraherar vattenmolekylerna varandra extra mycket. Vätebindningarna får vattenmolekylerna att hålla samman i långa kedjor och nätverk, men det är bindningar som hela tiden bryts och återbildas. Styrkan i vätebindningen gör att både smältpunkten och kokpunkten är betydligt högre än man annars skulle förvänta sig.

Vätebindningen gör också att vatten har en ovanligt hög ytspänning. Ytspänningen är ett mått på den sammanhållande energin i vätskeytan.

Vinklad molekyl ger hexagonal struktur

I flytande vatten (vänster) är strukturen oordnad. I fast is (höger) är strukturen ordnad hexagonal och tar då större plats.
Bild: © Svante Åberg

Vätebindningen och det faktum att vattenmolekylen är vinklad gör att vatten i kristallform, dvs. is, har en hexagonal (sexkantig) struktur med tomrum inuti sexhörningarna. Dessa tomrum gör att isen har lägre densitet än flytande vatten.

Det normala är att densiteten hos en vätska ökar när temperaturen sjunker. Det beror på att molekylrörelserna blir mindre häftiga och molekylerna därför inte knuffar bort varandra lika mycket. Även vatten ökar sin densitet när temperaturen sjunker, men bara ned till +4 °C. Blir det ännu kallare minskar densiteten igen. Det beror på att den hexagonala strukturen som vätebindningarna och den vinklade vattenmolekylen orsakar börjar bildas så smått redan innan vattnet fryser till is.

Vattnets syra-basegenskaper

Vatten är ett amfotert ämne. Det betyder att vatten kan fungera både som syra och som bas. Vatten deltar därför i många syra-basreaktioner. Till exempel reagerar vatten med koldioxid och bildar kolsyra som sedan bildar vätekarbonat och karbonat. Det finns flera gaser som bildar syror tillsammans med vatten. Till exempel reagerar svaveltrioxid till svavelsyra och kvävedioxid reagerar med vatten till salpetersyra.

Surhetsgraden anges med pH. pH är definierat bara i en vattenlösning, så vatten är i praktiken universallösningsmedlet för syror och baser i kemiskt arbete.

Vätebindning

Vätebindningar finns i vatten och i många organiska ämnen i kroppen. Vätebindningar ger ämnena polära egenskaper, såsom löslighet i vatten. Vätebindningarna är också viktiga för strukturen hos till exempel DNA.

I strukturformler brukar vätebindningen markeras med streckad linje.

Bindningskrafter inom och mellan molekyler

Kemiska ämnen hålls samman av starka bindningar såsom kovalenta bindningar i molekylföreningar och jonbindningar i salter. Bindningar inom föreningen är intramolekylära krafter.

Men de finns också bindningar mellan föreningarna, intermolekylära krafter.

intramolekylär = inom molekylen
intermolekylär = mellan molekyler

Intermolekylära krafter är svagare än de intramolekylära.

Vätebindning kan ske när vätet sitter på N, O eller F

Den så kallade vätebindningen hör dock till de starkare intermolekylära krafterna. Den kan beskrivas som en extra stark dipol-dipolbindning.

Vätebindning kan uppstå mellan ett väte som sitter på atomslaget N, O eller F i en molekyl och atomslaget N, O eller F i en annan molekyl.

Här är några exempel på kemiska föreningar som kan bilda vätebindningar:

Vatten: H2O kan vätebinda. Däremot kan inte analogen vätesulfid H2S vätebinda eftersom svavel inte är tillräckligt elektronegativ.
Vätefluorid: HF kan vätebinda. Däremot kan inte analogen vätebromid HBr vätebinda eftersom brom inte är tillräckligt elektronegativ.
Ammoniak: NH3 kan vätebinda.
Karboxylsyror: exempelvis ättiksyra, CH3COOH kan vätebinda.
Alkoholer: exempelvis etanol, CH3CH2OH kan vätebinda. Däremot kan inte analogen etantiol CH3CH2SH vätebinda eftersom svavel inte är tillräckligt elektronegativ. Isomeren CH3-O-CH3 till etanol har samma summaformel, men föreningen är en eter och sådana har inget väte som sitter direkt på syreatomen. Därför kan etrar inte vätebinda.
Aminer: exempelvis ettylamin, CH3CH2NH2 kan vätebinda. Undantag är tertiära aminer som trimetylamin N(CH3)3 eftersom det inte sitter någon väteatom direkt på kvävet. Inte heller kan analogen etanitiol CH3CH2SH inte vätebinda eftersom svavel inte är tillräckligt elektronegativ.

Vätebindning kan även ske till kloridjoner

Kloratomen är inte tillräckligt elektronegativ för att skapa ett elektronmoln med så hög täthet att vätebindningar kan skapas. En enskild kloratom kan däremot få tillräckligt tätt elektronmoln genom att ta upp en extra elektron så att en kloridjon skapas.

En lite udda variant av vätebindningar kan därför fås mellan den negativt laddade kloridjonen och vattenmolekyler i lösningen, exempelvis en koksaltlösning.

Bilden till höger är en ögonblicksbild av en simulering. Vätebindningarna är markerade med röda streck. Väteatomer är vita, syreatomer röda och kloridjonen är rosa.

Man kan se vätebindningar mellan vätet i vatten och kloridjonen, liksom vätebindning mellan vätet i en vattenmolekyl och syret i en annan vattenmolekyl.

N, O och F är starkt elektronegativa atomslag


Elektronmolnet kring en vattenmolekyl är starkt förskjutet från väteatomerna mot syreatomen.
"Water charge distribution" av Martin Chaplin

Atomslagen N, O och F är de mest elektronegativa atomslagen i hela periodiska systemet. Elektronegativa atomer har förmågan att dra till sig elektroner.

I vatten sitter vätet på en syreatom. Vätet har en kärna med laddningen +1 och en elektron med laddningen –1. En fri väteatom har därför nettoladdningen 0. Syret drar till sig elektronmolnet mycket effektivt, vilket leder till att det blir ett positivt laddningsöverskott δ+ på väteatomen. Vatten har två väteatomer, som sitter på syret. Även den andra väteatomen får ett positivt laddningsöverskott δ+. På motsvarande sätt får syreatomen ett dubbelt negativt laddningsöverskott 2δ–.

Det positiva vätet i en vattenmolekyl kan binda till det negativa syret i en annan vattenmolekyl med så kallad vätebindning. Bindningen är ovanligt stark för att vara en intermolekylär bindning. Det beror på att vätet är nästan ”naket” när elektronmolnet dragit sig undan så effektivt från vätet. Därmed kan vätet komma mycket nära syreatomen i den angränsande vattenmolekylen, vilket gör att den elektrostatiska attraktionen blir extra stark.

Vätebindningarna ger vattnet dess egenskaper

Vätebindningarna i vatten.
Modifierad av Michal Manas, original av Qwerter (modell): CC BY-SA 3.0, bild

Vatten är det viktigaste lösningsmedlet, inte bara inom kemin, men också för livet på jorden. Vattnet har nämligen speciella egenskaper som beror på vätebindningarna mellan molekylerna.

På grund av polariteten hos vätebindningarna är vatten ett utmärkt lösningsmedel för polära ämnen såsom salter och organiska ämnen med polära grupper. Den vinklade formen hos vattenmolekylen ger en hexagonal struktur hos iskristallerna när vattnet fryser, vilket återspeglas i snöflingornas sexkantiga form. Iskristallerna hålls samman av vätebindningar. Vätebindningarnas styrka gör också att vattnets kokpunkt är mycket högre än den annars skulle vara.


Vätebindningarna ger struktur åt DNA

Vårt genetiska arv är kodat i DNA. Där finns basparen AT (Adenin och Tymin) och GC (Guanin och Cytosin). Det är viktigt att A verkligen parar med T och att G verkligen parar med C, annars skulle det bli oordning i den genetiska koden.


Basparning av Adenin och Tymin.

Basparning av Guanin och Cytosin.
"Base pair Adenine Tyhmine" av Yikrazuul" Public Domain Mark "Base pair Guanine Cytosine" av Yikrazuul" Public Domain Mark

Parningen blir rätt tack vare att A och T parar med två vätebindningar, men G och C parar med tre vätebindningar.

Relativ luftfuktighet

Den relativa luftfuktigheten styr avdunstning och kondensation

Avdunstning från en vattenyta sker så länge som den relativa luftfuktigheten är lägre än 100 %, vilket innebär att ångtrycket ovanför vätskan är tillräckligt lågt för att de snabba molekylerna ska kunna lämna vätskan. Hur mycket vatten luften kan innehålla beror på temperaturen, ju varmare luft desto mer vatten kan den innehålla. Vattenmolekylerna i varm luft har högre hastighet och kan då studsa ifrån varandra vid kollisionerna istället för att som i kallare luft fastna i varandra och bilda vattendroppar. Luftfuktigheten är alltså maximal (100 %) då maximal mängd vattenånga för den aktuella lufttemperaturen är uppnådd, dvs. luften är mättad.

Meteorologerna brukar tala om den relativa luftfuktigheten, de jämför då den mängd vattenånga som luften innehåller med den maximala mängden som luften vid den aktuella temperaturen kan innehålla. En temperatur av ca 20 °C med en relativ luftfuktighet på 50 - 60 % upplevs av de flesta människor som behagligt. Om den relativa luftfuktigheten är för hög sker kondensation, det vill säga en övergång från vattenånga till flytande vatten, i stället för avdunstning och vi upplever luften som klibbig.

Att mäta relativ luftfuktighet

För att mäta den relativa luftfuktigheten använder meteorologer en anordning av två termometrar, en så kallad psykrometer. Den ena termometern har en fuktad gasbinda fäst runt kulan medan den andra är som vanligt. Då vatten avdunstar från termometern med gasbinda kommer den att visa en lägre temperatur än den torra termometern. Ju större temperaturskillnad som uppmäts mellan de båda termometrarna desto torrare luft är det.

Tabell 1: Luftfuktighet i procent
Temp. torra
termometern
Temperaturskillnad mellan termometrarna
0 °C1 °C2 °C3 °C4 °C5 °C6 °C7 °C8 °C9 °C10 °C
30 °C9791847872666055494440
25 °C9790837669625650443933
20 °C9789817365585144383225
15 °C9788797061534437292215

(Diagram och tabell är hämtade från P-G Andbert och G Mattson, 1994)

Exempel på effekter av den relativa luftfuktigheten

I tabellen ovan kan man avläsa att det vid en temperatur av 20 °C och med en temperaturskillnad på 5 °C är en relativ fuktighet på ca 58 %. Detta innebär att luften kan ta emot nästan dubbelt så mycket vattenånga innan moln eller dimma bildas. Vattendropparna i moln och dimma är mycket små, 0,001 - 0,1 mm, dessa växer till sig då luften stiger. Detta sker eftersom luften kyls ner och vattendropparna kan slå sig samman till större underkylda vattendroppar och kristaller. När sedan dessa blivit tillräckligt stora, cirka 0,5 - 3 mm, kan de falla ur molnet som nederbörd. Om atmosfären är kall med minusgrader även längst ner kommer nederbörden i form av snö och om det är varmt i det lägsta skiktet smälter snöflingorna och vi får regn. Även kall luft med minusgrader innehåller vattenånga, om än i liten mängd. Detta märks av om man vintertid ventilerar hus och verkstäder genom att släppa ut den fuktiga inomhusluften och ersätta den med frisk luft utifrån. Luften upplevs då som mycket torr och obehaglig.

mer material på avancerad nivå kommer

Litteratur

  1. Wilson A. Bentley, Photographer of Snow Crystals, Jericho Historical Society
    http://www.snowflakebentley.com/ (2003-08-14)
  2. Wilson Bentley, Snow Crystal Display, Jericho Historical Society
    http://www.jericho-underhill.com/bentley.htm (2003-08-14)
  3. Looking at Snowflakes, Connie Edwards, Eisenhower National Clearinghouse for Mathematics and Science Education (ENC)
    http://www.enc.org/features/calendar/unit/0,1819,171,00.shtm (2003-11-12)
  4. Snowflake Designer, ExploreLeraning
    http://www.explorelearning.com/index.cfm?method=cResource.dspDetail&ResourceID=47 (2003-11-12)
  5. "Snowflakes", Montessori World Educational Institute
    http://www.montessoriworld.org/Handwork/foldingp/snowflak.html (2003-08-14)
  6. Hall of Hexagons, David King
    http://www.drking.worldonline.co.uk/hexagons/index.html (2003-08-14)
  7. Peter William Atkins, General Chemistry, 1989, 2:a upplagan, Scientific American Liberary, New York.
  8. Albert L. Lehninger, David L. Nelson och Michael M. Cox, Principals of Biochemistry, 1993, 2:a upplagan, Worth Publishers, New York.
  9. The Ra-math lesson on the snowflake pattern, Wesley H. Bateman
    http://www.geocities.com/CapeCanaveral/Hall/3324/ramathsnowflake.htm (2003-08-14)
  10. Arthur N. Strahler, Physical Geography, 1975, 4:e upplagan, John Wiley & Sons, New York.
  11. Super snowflakes, The Chemical Institute of Canada
    http://www.cheminst.ca/ncw/experiments/esuper.html (2003-11-12)
  12. Snow Crystals, Kenneth G. Libbrecht
    http://www.its.caltech.edu/~atomic/snowcrystals/ (2003-08-14)
  13. Electron Microscopy Unit Snow Page, Beltsville Agricultural Research Center
    http://emu.arsusda.gov/snowsite/default.html (2003-11-12)
  14. Making Snow Crystals in the Classroom, Kazuhiko Hiramatsu
    http://www.users.eolas-net.ne.jp/saebou/kazupage/snow.htm (2003-08-14)

Fler experiment


aggregationsformer
Avdunstning och temperatur
Badbomber
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
En märklig planta
Ett glas luft
Exempelfil_Försvinnande bläck (Erik Lövbom)
Fryspunktsnedsättning
Förtenning
Gore-Tex, materialet som andas
Gör ditt eget läppcerat
Gör ett avtryck från papper till stearin
Hockey-visir
Hur fungerar en torrboll?
Hur kan man göra kläder av plast?
Hur mycket vatten finns i maten?
Kemi i en brustablett
Kemiskt snöfall
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Lödtenn 60
Molnet i flaskan
Myggmedel - hur funkar det?
Osynlig gas
Platta yoghurtburkar
Popcorn
Salta isen
Saltat islyft
Slime
Smältpunkten för legeringen lödtenn
Studsboll
Syrehalten i luft
Tillverka en parfym och gör doftande skraplotter
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenvulkan
Ägget i flaskan

fysikalisk kemi
Avdunstning och temperatur
Bestäm CMC för diskmedel
Bestämning av antalet kristallvatten i kopparsulfat
Blandningar av lösningsmedel
Blå himmel och röd solnedgång
Blåsa ballong med hjälp av PET-flaska
Brus-raketen
Den frysande bägaren
Den tillknycklade plåtburken
Den tunga koldioxiden
Diffusionshastigheten hos ammoniak respektive väteklorid - en jämförelse
Diska med äggula
En märklig planta
Enzymaktivitet i ananas
Enzymkinetik för katalas
Ett glas luft
Ett lysande experiment - Kemiluminiscens
Ett målande experiment - att rengöra en målarpensel
Flaskor mun mot mun
Flyter isen i matoljan?
Frigolit i aceton
Fryspunktsnedsättning
Försvinnande bläck
Gasvolym och temperatur
Gelégodis i vatten
Gore-Tex, materialet som andas
Gummi och lösningsmedel
Gummibandets elasticitet
Gör ett avtryck från papper till stearin
Gör kopparslanten skinande ren - med komplexkemi
Hockey-visir
Hur fungerar en torrboll?
Hur mycket vatten finns i maten?
Håller bubblan?
Identifiera plasten
Kemisk jämvikt hos ett osynligt bläck
Kemiskt snöfall
Klorofyllets röda fluorescens
Koka vatten i en spruta
Kondomen i flaskan
Kristallodling
Kristallvatten i kopparsulfat
Ljuset under glaset
Lödtenn 60
Löslighet och pH - En extraktion
Maizena gör motstånd
Majonnäs - en emulsion
Maskrosen som krullar sig
Matoljans viskositet och omättade fettsyror
Mentos-pastiller i kolsyrad läsk
Molnet i flaskan
Målarfärgens vattengenomsläpplighet
Mät CMC med hjälp av droppstorleken
När 1 plus 1 inte är 2
När flyter potatisen?
Olja som lösningsmedel
Osmos i ett ägg
Osmos i potatis
Osynlig gas
pH i kokt mineralvatten
Platta yoghurtburkar
Salta isen
Saltat islyft
Se genom papper
Smältpunkten för legeringen lödtenn
Stärkelse och vatten - fast eller flytande?
Såpbubblor
Tillverka din egen glidvalla
Tillverka en ytspänningsvåg
Trolleri med vätskor
Undersök en- och flervärda alkoholer
Utfällning av aluminium
Utsaltning av alkohol i vatten
Varför slipper bilen varma yllekläder på vintern?
Varför smäller inte ballongen?
Vattenrening
Vattenvulkan
Visa ytspänning med kanel
Vispa grädde
Värmeutvidgning
Åka hiss
Ägget i flaskan
Älskling, jag krympte ballongen

vardagens kemi
Att döda bakterier - kan Klorin & Javex va´ nå´t?
Bestäm CMC för diskmedel
Blev disken ren?
Coca-Cola vs Coca-Cola light
Den bästa bulldegen
Den omöjliga tvålen - den är preparerad!
Diska med äggula
Eld - varför brinner det?
Eldprovet
Enzymaktivitet i ananas
Enzymer i Tvättmedel
Ett gammalt tvättmedel, del 1: Salt ur björkaska
Ett gammalt tvättmedel, del 2: Tvål ur saltet
Ett målande experiment - att rengöra en målarpensel
Falu rödfärgspigment ur järnvitriol
Framställ en detergent
Framställ låglaktosmjölk
Fruktköttet får solbränna
Färga ullgarn med svampar
Färgämnen i M&M
Gore-Tex, materialet som andas
Gör din egen limfärg
Gör din egen tandkräm
Gör ditt eget läppcerat
Gör hårt vatten mjukt
Göra lim av kasein
Hockey-visir
Hur fungerar en torrboll?
Hur gör man kakan porös?
Hur moget är äpplet?
Hur smakar salmiak?
Håller bubblan?
Karbidlampan
Kemi i en brustablett
Kemisk vattenrening
Majonnäs - en emulsion
Maskrosen som krullar sig
Modellmassa av mjölk
Myggmedel - hur funkar det?
Målarfärgens vattengenomsläpplighet
När flyter potatisen?
Olja som lösningsmedel
Optiska Vitmedel
Osmos i ett ägg
Osynlig gas
Pektin och marmeladkokning
Pelargonens färg
Permanenta håret
Pulversläckare
Rengöra silver
Rostbildning och rostskydd
Skär sig majonnäsen?
Smältpunkten för legeringen lödtenn
Superabsorbenter i blöjor
Surt regn
Syror och baser i konsumentprodukter
Såpbubblor
Tillverka din egen deodorant
Tillverka din egen glidvalla
Tillverka din egen tvål, del 1: Själva tvålen
Tillverka din egen tvål, del 2: Parfymera och färga tvålen
Tillverka ditt eget läppstift
Tillverka Falu rödfärg enligt gammalt recept
Tillverka papperslim
Tillverka rengöringskräm
Tvätta i hårt vatten
Utfällning av aluminium
Utvinna järn ur järnberikade flingor
Vad händer då något brinner?
Vad händer när degen jäser?
Vad innehåller mjölk?
Vad är det i saltet som smakar salt?
Vad är skillnaden mellan maskin- och handdiskmedel?
Varför färgas textiler olika?
Varför kan man steka i smör och olja men inte i lättprodukter?
Varför mörknar en banans skal?
Varför rostar järn och hur kan man förhindra det?
Varför slipper bilen varma yllekläder på vintern?
Varför svider det i ögonen när man skalar lök?
Varför äter vi Samarin?
Vattenrening
Visa ytspänning med kanel
Vispa grädde
Växtfärga med rödbetor enligt receptet från Västerbotten
Ägget i flaskan
Ärg på en kopparslant
Äta frusen potatis